1 Henry's Law

Henry's law calculation for outgassing of pressurized water during subglacial earthquake.
Consider a cavity of initial volume V, completely filled with water saturated with nitrogen, that expands by

$$
\begin{equation*}
d V=d V_{l}+d V_{g} \tag{1}
\end{equation*}
$$

during an earthquake, with the subscripts indicating liquid and exsolved gas.
From Henry's Law, the volumetric concentration of nitrogen molecules in the water is $C=P / K$ with P the pressure and K the Henry's-law constant ([Mackay and Shiu(1981)]). The number of nitrogen molecules in the water is then $N=P V / K$. Noting that $d V_{l} \ll V$, the number of molecules exsolving into a gas phase during the quake, N_{g}, is the difference between those in the nearly-unchanged volume of water V at the initial pressure P_{1} and the final pressure P_{2},

$$
\begin{equation*}
N_{g}=V\left(P_{1}-P_{2}\right) / K \tag{2}
\end{equation*}
$$

Then, using the gas law at absolute temperature T with gas constant R,

$$
\begin{equation*}
d V_{g}=N_{g} R T / P_{2} \tag{3}
\end{equation*}
$$

The water has compressibility β, so

$$
\begin{equation*}
d V_{l}=\beta V\left(P_{1}-P_{2}\right) \tag{4}
\end{equation*}
$$

Substituting into equation 1 from equations 3 and 4 yields

$$
\begin{equation*}
d V=\beta V\left(P_{1}-P_{2}\right)+N_{g} R T / P_{2} \tag{5}
\end{equation*}
$$

and substituting for N_{g} from Equation 2

$$
\begin{equation*}
d V=\beta V\left(P_{1}-P_{2}\right)+\frac{V\left(P_{1}-P_{2}\right) R T}{K P_{2}} \tag{6}
\end{equation*}
$$

Multiplying by P_{2} and dividing by V and β gives

$$
\begin{equation*}
\frac{P_{2} d V}{\beta V}=-P_{2}^{2}+P_{1} P_{2}-P_{2}\left(\frac{R T}{\beta K}\right)+P_{1}\left(\frac{R T}{\beta K}\right) \tag{7}
\end{equation*}
$$

Then, adding or subtracting to move everything to the left-hand side, and grouping in terms of P_{2} gives

$$
\begin{equation*}
P_{2}^{2}+P_{2}\left(\frac{d V}{\beta V}-P_{1}+\frac{R T}{\beta K}\right)-\frac{R T}{\beta K} P_{1}=0 \tag{8}
\end{equation*}
$$

which is the quadratic for the final pressure P_{2}. The solution with physically possible, positive pressure is

$$
\begin{equation*}
P_{2}=\frac{-\left(\frac{d V}{\beta V}-P_{1}+\frac{R T}{\beta K}\right)+\left[\left(\frac{d V}{\beta V}-P_{1}+\frac{R T}{\beta K}\right)^{2}+\frac{4 R T P_{1}}{\beta K}\right]^{0.5}}{2} \tag{9}
\end{equation*}
$$

The constants are $K=10^{5} \mathrm{~m}^{3} \mathrm{~Pa}^{-1} \mathrm{~mol}^{-1}$ ([Rettich et al.(1984)Rettich, Battino, and Wilhelm $]$), $\beta=5 \times 10^{-10} \mathrm{~Pa}^{-1}\left(\left[\right.\right.$ Fine and Millero(1973)]), and $R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Temperature will be close to or slightly below $T=273 \mathrm{~K}$, depending on pressure.

For air-free water, our specified strain of $d V / V=5 \times 10^{-3}$ would drop the pressure from 10 MPa to 0 , sufficient to cause cavitation beneath about 1100 m of ice, but the pressure would drop only to 8 MPa if complete equilibrium were achieved starting from water fully saturated with nitrogen.

References

[Fine and Millero(1973)] Fine, R. A., and F. J. Millero (1973), Compressibility of water as a function of temperature and pressure, The Journal of Chemical Physics, 59(10), 5529.
[Mackay and Shiu(1981)] Mackay, D., and W. Y. Shiu (1981), A critical review of Henry's law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10(4), 1175-1199.
[Rettich et al.(1984)Rettich, Battino, and Wilhelm] Rettich, T., R. Battino, and E. Wilhelm (1984), Solubility of gases in liquids. XVI. Henry's law coefficients for nitrogen in water at 5 to 50 C, Journal of solution chemistry, 13(5), 335-348.

