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SUPPLEMENTARY MATERIAL 
 

The response of flume-like alluvial channels is investigated in numerical simulations 
by solving the shallow water equations in one dimension coupled to a sandy non-cohesive 
river bed (details of the model can be found in Simpson and Castelltort, 2006). The mass and 
momentum conservation equations for the water-sediment mixture and the mass conservation 
equations, respectively, for sediment and bed material are: 
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where ݐ is time (s), ݔ is the streamwise coordinate (m), ݃ is gravitational acceleration 
(m/s2),	݄ is the water depth (m), ݑ is the flow velocity (m/s), ܿ is the volumetric sediment 
concentration (m3/m3), ݖ is the bed elevation (m), ߮ is the porosity of the bed sediment, ௙ܵ is 

the friction slope, ܧ is the entrainment flux (m/s), ܦ is the deposition flux (m/s) and ܾ௫ is a 
group of terms accounting for spatial variations in sediment concentration and momentum 
transfer due to sediment exchange between the flow and the erodible bed. To close these 
governing equations we employ Manning’s relation for the friction slope: 
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where ݊ is Manning’s roughness coefficient, and the following empirical functions for the 
depositional and entrainment fluxes: 
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where ܥ௔	ሺൌ 2ܿሻ is the near-bed sediment concentration, ݉ is an exponent, ߱ is the particle 
settling velocity (m/s): 
 



߱ ൌ	ඥሺ13.95ߥ ݀⁄ ሻଶ ൅  ݀/ߥ	13.95 - ݀݃ݏ1.09

 ௪ areߩ ௦ andߩ ,is the kinematic viscosity of water (m2/s), ݀ is the sediment grain size (m) ߥ
the densities of sediment and water respectively (kg/m3), ݏ	ሺൌ ௦ߩ ⁄௪ߩ െ 1ሻ is the submerged 

specific gravity of the sediment, ߠ (ൌ ∗ݑ ,ሻ) is Shield’s parameter݀݃ݏሺ/∗ݑ 	ቀൌ ඥ݊ݑ 8⁄ 	ቁ is 

the friction velocity and ߠ௖	is the critical Shields parameter for initiation of sediment motion. 
This hyperbolic system of equations is solved with an explicit finite volume technique using 
the total-variation-diminishing (TVD) version of the second-order weighted average flux 
method (WAF) in conjunction with the HLLC approximate Riemann solver and the 
SUPERBEE limiter (Toro, 2001).  
 

The model investigated is well known to accurately describe both highly transient and 
steady free surface flows involving sediment transport (Toro, 2001). Under conditions of 
steady uniform flow, it has been shown that the above equations can be reduced to a diffusion 
equation (e.g., Paola et al., 1992). The simplified diffusive model accurately describes 
channel aggradation and downcutting due to sediment overloading, but it is unlikely to be 
accurate for the conditions of this study where the flow conditions are both transient and non-
uniform. Hence, we have retained the full nonlinear hyperbolic model to avoid introducing a 
priori diffusive dampening of input signals. Nevertheless, our investigation is subject to 
various limitations. First, we assume the channel is one-dimensional and therefore ignore 
floodplain coupling and variations in channel width. Second, we don’t explicitly include any 
bedload transport which, though usually a small part of the total transport load, is 
nevertheless important in determining channel morphology. 

 
We consider a hypothetical river channel 100 m long with a low initial gradient (10-5 

m/m) and uniform initial flow conditions. The spatial resolution in the horizontal direction 
was 1 m and typical time steps were on the order of 0.1 seconds (dynamic time-stepping was 
used). We impose the water flux and sediment concentration at the upstream boundary (left 
side in Fig. 1a) while at the downstream boundary we set the bed elevation to 0 m and fix the 
water depth to a constant value of 7.5 cm (flow is always subcritical). We initially run our 
numerical experiments with constant boundary conditions until the bed elevation reaches 
steady-state and the sediment outflux balances the sediment influx. We then perturb the 
model rivers with cyclic variability at the upstream boundary. In the case of water flux 

cycles, we impose a sinusoidal variation in ݍ௪ (ൌ ݑ݄ ൌ ௢ݍ ൅ ௢ݍ0.5 sin
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	 where ߣ is the 

period (s) and ݍ௢	ሺൌ 0.0156	mଶ/sሻ	is the mean water flux per unit width) while the inlet 
sediment concentration is held constant (c = 0.001). For sediment concentration cycles, we 
impose a sinusoidal variation in sediment concentration ܿ (=ܿ௢ ൅ 0.5ܿ௢ sin  is ߣ where ߣ/ݐߨ2
the period and ܿ௢	(ൌ 0.001) is the mean sediment concentration) while the water flux is held 
constant ሺݍ௪ = 0.0156 m2/s). Both scenarios introduce periodic variability (by a factor of 3) 
in the inlet sediment flux ݍ௦ (ൌ  .though the system response is by no means the same (ܿݑ݄
Additional parameters adopted in our simulations are: ݃ = 9.8 m/s2, ݀ = 0.5 mm, ݊ = 0.03, ݉ 
 .௖ = 0.045ߠ ,1.2x10-6 m2/s= ߭	 ,1.65= ݏ ,0.4= ߮ ,2=



Previous studies have recognized that the ability of rivers to transmit sediment pulses 
depends on the river response time - defined as the characteristic time required for a river to 
achieve equilibrium following a perturbation (Howard, 1982; Paola et al., 1992). In our 
models, the response time depends on both the magnitude and the sign of forcing. The time to 
change from an out-of-grade slope S୭	to an equilibrium slope Sୣ as a result of aggradation 
(ܵ௢ ൏ ܵ௘) is 
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where ܮ is the length of the river system (݉), ݍ௦ is the average sediment influx per unit width 
(݉ଶିݏଵ) and ߮ is the porosity of the sediment on the river bed (see also Howard, 1982). This 
equation bears a close resemblance to commonly employed relations based on scaling 
arguments for diffusion models (Castelltort and Van Den Driessche, 2003; Métivier and 
Gaudemer, 1999), though it is derived here on the basis of mass balance for a triangular-
shaped sediment wedge fed with sediment. The time to evolve from an out-of-grade slope 
ܵ௢	to an equilibrium slope ܵ௘ as a result of downcutting (ܵ௢ ൐ ܵ௘) is 
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where	ߣ	is the period of the perturbation (s). In other words, downcutting of non-cohesive 
sediment is sufficiently rapid such that the adjustment time scale is limited by how fast 
forcing takes place (dictated by ߣ) rather than by sediment properties or fluvial processes. 

 
References Cited 

 
Castelltort, S., and Van Den Driessche, J., 2003, How plausible are high-frequency sediment 

supply-driven cycles in the stratigraphic record?: Sedimentary Geology, v. 157, p. 3–13, 
doi:10.1016/S0037-0738(03)00066-6. 

Howard, A.D., 1982, Equilibrium and time scales in geomorphology: Application to sand-bed 
alluvial streams: Earth Surface Processes and Landforms, v. 7, p. 303–325, 
doi:10.1002/esp.3290070403. 

Métivier, F., and Gaudemer, Y., 1999, Stability of output fluxes of large rivers in South and 
East Asia during the last 2 million years: Implications on floodplain processes: Basin 
Research, v. 11, p. 293–303, doi:10.1046/j.1365-2117.1999.00101.x. 

Paola, C., Heller, P.L., and Angevine, C.L., 1992, The large-scale dynamics of grain-size 
variations in alluvial basins, 1: Theory: Basin Research, v. 4, p. 73–90, 
doi:10.1111/j.1365-2117.1992.tb00145.x. 

Simpson, G. and Castelltort, S., 2006, A model for topographic evolution due to coupled 
surface water flow and sediment transport: Computers and Geosciences, v. 32, p. 1600-
1614. 

Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows (Wiley, New York, 
2001). 


