SUPPLEMENTARY INFORMATION

Methods

The $\delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ values were measured relative to the V-PDB standard using a VG PRISM II stable isotope mass spectrometer equipped with a common acid bath acidification system.
A calcite standard (ULTISS) was used to monitor precision (mean $=1.73 \%$, standard deviation $=0.24 \%$). For [CAS] measurements, approximately 1.5 mg of micro-drilled powdered sample was acidified with 1 ml of 10% nitric acid and analyzed with a JY UltimaC ICP-AES with Polychronometer. A repeat measurement of a standard solution gave an error of 0.6%.

Table DR1. Measured Values

Sample	$\boldsymbol{\delta}^{\mathbf{1 3}} \mathbf{C}$	$\boldsymbol{\delta}^{\mathbf{1 8}} \mathbf{O}$	$\mathbf{S}(\mathbf{p p m})$
BBR-B8 (top)	-7.597	-6.329	1059.71
BBR-B7	-7.131	-6.339	1356.98
BBR-B6	-6.762	-6.277	1469.36
BBR-B5	-6.372	-6.466	1561.84
BBR-B4	-5.955	-6.704	782.54
BBR-B3	-5.195	-6.553	997.40
BBR-B2	-4.352	-6.357	2045.21
BBR-B1 (base)	-3.664	-5.936	2203.72

Figure DR1. Field photograph of formerly-aragonite fan layers from Williston Lake; one thick fan bed (black bar) and a fan bed-bearing interval (white bar). Chisel for scale.

Figure DR2. pH space as a function of alkalinity and TCO_{2} demonstrating the effect of sulfate reduction on pH . Radiating lines are lines of equal pH . Although sulfate reduction in a closed system will always increase the overall alkalinity of the system, it is not always beneficial for carbonate production. Sulfate reduction yields bicarbonate $\left(\mathrm{HCO}_{3}{ }^{-}\right)$as a byproduct: $\mathrm{SO}_{4}{ }^{2-}+2 \mathrm{CH}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{~S}$. Bicarbonate is a component of both alkalinity and TCO_{2}, thus sulfate reduction changes porewater pH along a $1: 1$ slope in the fan diagram (see arrows). Adding bicarbonate into a pore space will raise the pH (promote precipitation of calcium carbonate) if the initial pH is low (black arrow). When initial pH is high, sulfate reduction in a pore space will actually decrease pH (inhibit precipitation of calcium carbonate) (white arrow).

Figure DR3. Enlarged version of Figure 1E in text; scale 5 mm .

