Spotila, 2012: Data Repository

Methods

Figure DR-1 (a-d) illustrates conceptually how divide elevation depends on the geometry of intersecting ridges. Ridgeline slope depends on both hillside gradient and the obliquity of opposing hillside trends. The simple relationship between ridgeline slope and hillside obliquity for varying hillside gradients (Fig. DR-1c) is based on the simplifying assumption of planar hillsides, although natural hillsides generally exhibit curvature in 3D. The height, shape, and dynamic evolution of ridgelines will also depend on the competition of relative advance of opposing hillsides (Fig. DR-1d).

In the global survey, groups of peaks worldwide were screened using GoogleEarth. Peaks were selected based on regional hierarchies (i.e. top highest peaks in a given area), such as the top 100 peaks in the world (Table 1). The peaks screened are listed in Table DR-1 ($\mathrm{n}=255$), along with location coordinates. The locations span a range of erosional (glacial and fluvial), climatic (arid to humid), and tectonic (erosion and uplift rates) settings. Lists of top peaks in different areas were based on various websites, primarily including Wikipedia and PeakBagger:
http://en.wikipedia.org/wiki/List_of_highest_mountains
http://www.peakbagger.com/ListIndx.aspx
Although these are un-refereed internet sources, all coordinates of peaks listed were checked and the elevation verified using GoogleEarth. Minor errors in these lists, such as missing peaks or specific values of prominence, cannot be completely ruled out.

However, the intention of using these regional hierarchies was to eliminate bias in which peaks were selected for inspection in the global survey. All peaks in these lists were
screened and included in Table DR-1, regardless of appearance, and all peaks in these lists are significant, prominent peaks in their respective areas. Note that peak prominence is defined as the height of a peak above the lowest contour that encircles it and nothing higher (Fig. DR-1e). Prominence is typically set at $\sim 5-10 \%$ of the total local relief of a range (e.g. $\sim 500 \mathrm{~m}$ in the high Himalaya; Table 1), such that many high peaks may not be included in the list because they are too close in elevation to a nearby higher peak. Figure DR-1f shows a comparison of a parabolic ridge with only one prominent peak relative to a ridge with lower saddles that yields many more prominent peaks. As an aside, the frequency of prominent peaks per area may actually be an interesting metric for comparison of mountain topography.

Peaks were screened using unexaggerated 3D visualization of digital topography (on a template combining satellite imagery) using GoogleEarth at a uniform scale of approximately $1: 10,000$. GoogleEarth uses a variety of elevation data, ranging from 10 m to 90 m resolution (SRTM data). In most mountain ranges examined, the resolution was 10 m or 30 m . Regardless of the DEM resolution, however, the GoogleEarth was adequate for identifying ridges shorter than $\sim 0.5 \mathrm{~km}$ at all locations at $1: 10,000$ scale. Spatial variation in DEM resolution should thus not affect the results of the global survey. Peaks located within 0.2 km of divide intersections were classified as dividejunction peaks (Fig. DR-2). The contributing divides had to be a minimum of $\sim 0.5 \mathrm{~km}$ long and separate tributary valleys by at least 1 km . This threshold was designed to include divides that separate first-order drainages, but to exclude minor rill-like crenulations along hillsides within individual basins. An additional criteria was that divide-junction peaks had to appear with three (or more) hillside faces that clearly drain
into separate basins with clear concave contours. Examples of peaks that were classified as ridge-only (vs. divide-junction) based on this criteria are shown in Fig. DR-3.

Most divide-junction peaks consist of divide triple junctions, although a significant fraction of quadruple junctions also occur (Table DR-1). The minimum lengths of contributing divides were measured in map view for each location (Table DR1). Since the goal of the survey was to identify peaks that have at least three intersecting divides, the third-shortest contributing divide was measured for all divide junctions (i.e. not the absolute minimum on quadruple junctions). The distribution of these thirdshortest divide lengths shows that $3 / 4$ of the divide-junction peaks are made by divides that exceed 3 km length (Fig. 2). Where the shortest-contributing divide length exceeds 5-10 km, length measurements may be ambiguous due to the possibility of taking multiple paths off of the divide network (Figure DR-1g).

The relationship between peak and divide-junction locations was also tested at the local scale. Ten primarily glacial and fluvial areas of rugged topography were selected for examination of drainage divide structure in map and/or profile view (Table DR-2; Fig. DR-4, DR-5). Note that some of the glacial areas are now deglaciated, but exhibit topography that is characteristically glacial. Similarly, the highest elevations of some of the fluvial areas may have experienced minor glacial or periglacial influence during the last glacial maximum (e.g. the Atlas Mountains), but the topography of these ranges is dominantly fluvial. The areas mapped exclude volcanic terrain, low-relief areas, and high-relief areas that exhibit interfluves with relict surfaces. Sources for the long-term denudation rates reported for these areas are provided in Table DR-2. Results of profile and map-view analysis are presented in Tables DR-3 and DR-4.

Divide maps were constructed using shaded relief images from GoogleMaps. All maps were shaded from the northwest and mapped at 1:200,000 scale on a graphical interface. Divides were easy to identify using this interface, given that side illumination highlights most ridges as white lines. Given that ridges and divides exhibit semi-fractal distributions and that the resolution of DEMs may vary by location, a mapping threshold of minimum ridge size was employed; only divides $>5 \mathrm{~km}$ long and separated by $>3 \mathrm{~km}$ (i.e. valley spacing) were mapped. Mapped ridges also had to have significant relief from hillsides and separate clearly-developed basins with curved contours. This criteria made mapping of ridges somewhat subjective, but was used to screen out topographic crenulations along individual hillsides that do not separate first or higher order basins. Divide junctions were mapped for each area based on the mapped ridge networks. Where two triple junctions came within $\sim 1 \mathrm{~km}$ of each other, they were combined into a quadruple junction. Various statistics of the occurrence of divide junctions and total divide length per mapped area are reported in Table DR-4. When counting divide junctions in each area, quadruple junctions were counted twice (given that each is equivalent to 2 triple junctions joined together).

Five glacial and fluvial areas were selected for ridge profile analysis (Table DR-3, Fig. DR-5). Ridge profiles were constructed using GoogleEarth in the same geographic interface as the global peak survey, but at a uniform scale of $\sim 1: 20,000$. Elevations were sampled at approximately $1-\mathrm{km}$ spacing, so that only significant peaks and undulations are represented. This spacing was selected to reduce data volume, given that the profiles would eventually be analyzed at small scale only. The elevations of all divide junctions were also directly sampled. Ridge profiles follow the irregular trace of ridges in map
view and include all ridges in a connected ridge network using the criteria listed above for ridge maps. Profiles generally cover 80-km-long primary ridges, and thus do not cover the entire area of each map. In some cases, profiles stop abruptly mid-ridge, because a profile was stopped after a representative length had been obtained. Secondary ridges are plotted as extending in either the positive or negative x -direction depending on the orientation of the primary ridge and the side from which the secondary ridge joins (Fig. DR-5). Several ridge profiles were constructed using 1:250,000 topographic maps (Chugach, St. Elias, Smoky Mtns., San Gabriel Mountains), but corrected for the same pattern of ridges as the GoogleEarth profiles. Once completed, divide junctions were identified and compared to peak locations. The divide junctions on profiles are identical to those on the maps of the same area, given that they share defining criteria. Peaks were defined as any positive relief form, regardless of prominence. The slope of primary ridges was calculated between each elevation spacing and thus has a wavelength of 1 km and may miss slight undulations. The topographic roughness was measured in two ways; $\boldsymbol{\Psi}_{I}$ is the horizontal ridge length divided by the total ridge length in profile (i.e. akin to sinuosity, but measured in profile at 8 x exaggeration), and $\boldsymbol{\Psi}_{2}$ is the normalized distance of the ridge profile over which 50% of the profile's relief is obtained.

This study was made possible by the easily-used geographic tools provided by Google. GoogleEarth and GoogleMaps enable instant access to global topography, without having to download and process numerous individual patches of DEMs. Although the association of peaks and ridge junctions has previously been observed Gilbert, 1880; Twidale, 1976; Gonzalez, 2003), recognition of the influence of drainage divide structure on peaks required the advent of easily accessible digital topography.

Table DR-1: Global survey of peaks.

Rank Name	Elev. (m)	Region	Location	Shortest Ridge Peak type
1 Everest	8848	Himalaya	$27.9881 \mathrm{~N}, 86.9253 \mathrm{E}$	5.2 triple
2 K 2	8611	Karakoram	$35.8814 \mathrm{~N}, 76.5133 \mathrm{E}$	6.5 five-sided tower
3 Kangchenjunga	8586	Himalaya	$27.7033 \mathrm{~N}, 88.1475 \mathrm{E}$	15.3 triple
4 Lhotse	8516	Himalaya	$27.9617 \mathrm{~N}, 86.9331 \mathrm{E}$	9.6 triple
5 Mākàlu	8485	Himalaya	27.8897 N, $87.0889^{\circ} \mathrm{E}$	8.0 tríple
6 Cho Oyu	8188	Himalaya	28.0942 N, 86.6608 E	3.3 triple, almost quad.
7 Dhaulagiri	8167	Himalaya	28.6967 N, 83.4931 E	16.6 quad.
8 Manaslu	8163	Himalaya	$28.5500 \mathrm{~N}, 84.5597 \mathrm{E}$	5.5 triple
9 Nanga Parbat	8126	Himalaya	$35.2372 \mathrm{~N}, 74.5892 \mathrm{E}$	0.9 triple
10 Annapurna 1	8091	Himãaya	28.5956 N, $83.8203^{\circ} \mathrm{E}$	4.6 triple
11 Gasherrum I	8080	Karakoram	$35.7244 \mathrm{~N}, 76.6964 \mathrm{E}$	8.7 triple
12 Broad Peak	8051	Karakoram	$35.8106 \mathrm{~N}, 76.5683 \mathrm{E}$	ridge only
13 Gasherbrum II	8034	Karakoram	35.7578 N, 76.6533 E	ridge only
14 Shishapangma	8027	Himalaya	28.3533 N, 85.7786 E	1.3 triple
15 Gyachung Kang	7952	Himalaya	$28.0981 \mathrm{~N}, 86.7450 \mathrm{E}$	5.3 triple
16 Annapurna II	7937	Himalaya	28.5347 N, 84.1219 E	3.5 triple
17 Gasherbrūm IV	7932	Karakoram	35.7606 N, 76.6161 E	9.6 tríple
18 Himalchuli	7893	Himalaya	28.4367 N, 84.6397 E	23.5 triple
19 Distaghil Sar	7884	Karakoram	36.3258 N, 75.1878 E	28.9 triple
20 Ngadi Chuli	7871	Himalaya	$28.5033 \mathrm{~N}, 84.5667 \mathrm{E}$	1.4 triple
21 Nuptse	7864	Himalaya	27.9675 N, 86.8869 E	0.8 triple
22 Khunyang Chhish	7823	Karakoram	$36.2053 \mathrm{~N}, 75.2078 \mathrm{E}$	6.6 quad.
23 Masherbrum	7821	Karakoram	35.6411 N, 76.3058 E	6.8 quad.
24 Nanda Devi	7816	Himalaya	$30.3758 \mathrm{~N}, 79.9708 \mathrm{E}$	1.6 triple
25 Chomo Lonzo	7804	Himalaya	$27.9306 \mathrm{~N}, 87.1078 \mathrm{E}$	4.5 triple, almost quad.
26 Batura Sar	7795	Karakoram	$36.5103 \mathrm{~N}, 74.5225 \mathrm{E}$	ridge only
27 Kanjut Sar	7790	Karakoram	$36.2056 \mathrm{~N}, 75.4169 \mathrm{E}$	15.1 five-sided tower
28 Rakaposhi	7788	Karakoram	36.1425 N, 74.4894 E	17.7 triple
29 Namche Barwa	7782	Himalaya	$29.6311 \mathrm{~N}, 95.0553 \mathrm{E}$	23.2 triple
30 Kamet	7756	Himalaya	30.9200 N, 79.5917 E	3.5 triple
31 Dhaulagiri II	7751	Himalaya	28.7628 N, 83.3883 E	14.1 triple
32 Saltoro Kangri	7742	Karakoram	$35.3992 \mathrm{~N}, 76.8481 \mathrm{E}$	3.4 quad.
33 Janu	7711	Himalaya	$27.6822 \mathrm{~N}, 88.0444 \mathrm{E}$	1.6 triple
34 Tírich Mir	7708	Hindu Küsh	$36.2553 \mathrm{~N}, 71.8417 \mathrm{E}$	11.8 triple
35 Mölamenqing	7703	Himalaya	28.3550 N, 85.8097 E	2.6 quad.
36 Gurla Mandhata	7694	Himalaya	$30.4386 \mathrm{~N}, 81.2967 \mathrm{E}$	12.8 triple
37 Saser Kangri I	7672	Karakoram	$34.8667 \mathrm{~N}, 77.7525 \mathrm{E}$	23.4 triple
38 Chogolisa	7665	Karakoram	$35.6131 \mathrm{~N}, 76.5747 \mathrm{E}$	3.6 triple
39 Kongur Tagh	7649	Kunlun	$38.5933 \mathrm{~N}, 75.3133 \mathrm{E}$	1.6 triple
40 Dhaulagiri V	7618	Himalaya	$28.7339 \mathrm{~N}, 83.3614 \mathrm{E}$	10.9 triple
41 Shispare	7611	Karakoram	36.4406 N, 74.6808 E	17.2 quad.
42 Trivor	7577	Karakoram	36.2875 N, 75.0850 E	6.1 triple
43 Gangkhar Puensum	7570	Himalaya	28.0472 N, 90.4553 E	5.3 triple
44 Gongga Shan	7556	Daxue Shan	$29.5953 \mathrm{~N}, 101.8797 \mathrm{E}$	22.0 quad.
45 Annapurna İİ	7555	Himalaya	28.5850 N, 83.9900 E	37.4 triple
46 Muztagh Ata	7546	Kunlun	38.2758 N, 75.1161 E	7.7 quad.
47 Skyang Kangri	7545	Himalaya	35.9264 N, 76.5675 E	1.0 triple
48 Changtse	7543	Himalaya	28.0247 N, 86.9142 E	5.0 quad.
49 Küla Kangri	7538	Himalaya	28.2269 N, 90.6164 E	7.3 triple
50 Kongur Tiube	7530	Kunlun	38.6158 N, 75.1958 E	9.5 triple
51 Mamostong Kangri	7516	Karakoram	$35.1419 \mathrm{~N}, 77.5775 \mathrm{E}$	2.0 triple
52 Saser Kangri II	7513	Karakoram	$34.8047 \mathrm{~N}, 77.8067 \mathrm{E}$	4.8 triple
53 Ismäil Sarmani	7495	Pamir	$38.9431 \mathrm{~N}, 72.0158 \mathrm{E}$	16.0 triple
54 Saser Kangri	7495	Karakoram	$34.8456 \mathrm{~N}, 77.7850 \mathrm{E}$	ridge only (cone)
55 Noshaq	7492	Hindu Kush	36.4322 N, 71.8286 E	ridge only
56 Pumari Chhish	7492	Karakoram	$36.2114 \mathrm{~N}, 75.2503 \mathrm{E}$	1.4 triple
57 PaGu Sar	7476	Karakoram	36.4878 N, 74.5878 E	13.7 triple
58 Yukshin Gardan Sar	7469	Karakoram	$36.2511 \mathrm{~N}, 75.3747 \mathrm{E}$	2.1 triple
59 Teram Kangri I	7462	Karakoram	$35.5800 \mathrm{~N}, 77.0783 \mathrm{E}$	ridge only
60 Jongsong Peak	7462	Himalaya	$27.8817 \mathrm{~N}, 88.1358 \mathrm{E}$	30.0 triple
61 Malubiting	7458	Karakoram	$36.0033 \mathrm{~N}, 74.8753 \mathrm{E}$	13.6 triple
62 Gangapurna	7455	Himalaya	$28.6050 \mathrm{~N}, 83.9636 \mathrm{E}$	4.5 triple
63 Jengish Chokusu	7439	Tian Shan	42.0347 N, 80.1297 E	30.0 triple
64 K12	7428	Karakoram	35.2958 N, 77.0222 E	10.3 triple
65 Yangra	7422	Himalaya	28.3914 N, 85.1272 E	26.4 triple
66 Sia Kangri	7422	Karakoram	$35.6633 \mathrm{~N}, 76.7617 \mathrm{E}$	3.5 triple
67 Momhil Sar	7414	Karakoram	36.3178 N, 75.0364 E	10.1 triple
68 Kabru N	7412	Himalaya	$27.6339 \mathrm{~N}, 88.1167 \mathrm{E}$	3.7 triple

69 Skil Brum	7410	Karakoram	$35.8508 \mathrm{~N}, 76.4286 \mathrm{E}$	14.9 quad.
70 Haramosh	7409	Karakoram	$35.8400 \mathrm{~N}, 74.8975 \mathrm{E}$	10.9 triple
71 Istor-o-Nal	7403	Hindu Kush	$36.3756 \mathrm{~N}, 71.8983 \mathrm{E}$	2.1 triple, nested
72 Ghent Kangri	7401	Karakoram	$35.5178 \mathrm{~N}, 76.8006 \mathrm{E}$	12.6 triple
73 Ultar Sar	7388	Karakoram	$36.3908 \mathrm{~N}, 74.7167 \mathrm{E}$	5.6 triple
74 Rimo I	7385	Karakoram	35.3550 N, 77.3689 E	5.0 triple
75 Churen Himal	7385	Himalaya	28.7347 N, 83.2175 E	0.6 triple
76 Teram Kangri III	7382	Karakoram	35.5997 N, 77.0481 E	3.9 quad.
77 Sherpi Kangri	7380	Karakoram	$35.4661 \mathrm{~N}, 76.7814 \mathrm{E}$	2.5 triple
78 Labuche Kang	7367	Himalaya	28.3042 N, 86.3508 E	9.2 triple
79 Kirat Chülì	7362	Hīmälāya	27.7878 N, 88.1953 E	3.9 triple
80 Abi Gamin	7355	Himalaya	30.9325 N, 79.6025 E	11.9 quad.
81 Nangpai Gosum	7350	Himalaya	$28.0733 \mathrm{~N}, 86.6142 \mathrm{E}$	7.0 triple
82 Saraghrar	7349	Hindu Kush	36.5475 N, 72.1150 E	4.3 triple, nested
83 Chamlang	7321	Himalaya	$27.7750 \mathrm{~N}, 86.9797 \mathrm{E}$	3.5 triple
84 Chongtar	7315	Karakoram	$35.9153 \mathrm{~N}, 76.4292 \mathrm{E}$	6.8 quad., nested
85 Baltoro Kangri	7312	Karakoram	35.6392 N, 76.6733 E	2.1 triple
86 Siguang Ri	7309	Himalaya	$28.1472 \mathrm{~N}, 86.6850 \mathrm{E}$	6.5 triple
87 The Crown	7295	Karakoram	$36.1067 \mathrm{~N}, 76.2058 \mathrm{E}$	1.2 quad. (cone)
88 Gyala Peri	7294	Himalaya	29.8144 N, 94.9686 E	6.8 triple
89 Porong Ri	7292	Himalaya	$28.3894 \mathrm{~N}, 85.7200 \mathrm{E}$	ridge only
90 Baintha Brakk	7285	Karakoram	35.9475 N, 75.7533 E	ridge only
91 Yütmaru Sar	7283	Karakoram	$36.2264 \mathrm{~N}, 75.3672 \mathrm{E}$	5.1 triple
92 Baltistan Peak (K6)	7282	Karakoram	$35.4183 \mathrm{~N}, 76.5517 \mathrm{E}$	23.7 triple
93 Kangpenqing	7281	Himalaya	28.5508 N, 85.5456 E	ridge only
94 Muztagh Tower	7276	Karakoram	35.8278 N, 76.3611 E	ridge only
95 Diran	7266	Karakoram	$36.1203 \mathrm{~N}, 74.6617 \mathrm{E}$	20.4 quad.
96 Labuche Kang İİ	7250	Himalaya	$28.3014 \mathrm{~N}, 86.3839 \mathrm{E}$	11.5 triple
97 Pütha Hiùnchüli	7246	Himalaya	28.7478 N, 83.1461 E	24.0 quad.
98 Apsarasas Kangri	7245	Karakoram	$35.5386 \mathrm{~N}, 77.1486 \mathrm{E}$	4.5 triple
99 Rimo İİI	7233	Karakoram	$35.3753 \mathrm{~N}, 77.3617 \mathrm{E}$	3.7 triple
100 Langtan Lirung	7227	Himalaya	28.2561 N, 85.5169 E	5.1 triple
\# of ridge-only peaks $=$ 10. Triple/quad peaks $=90 \%$				
GROUP 2: 50 highest peaks ín North America (500 m prominence), all of which are or have been glaciated.				
Rank Name	Elev. (m)	Region	Location	Shortest Ridge Peak type
1 Mt. McKinley	6194	Alaska Range	$63.0690 \mathrm{~N}, 151.0063 \mathrm{~W}$	19.1 triple
2 Mt. Logan	5956	St. Elias Range	$60.5666 \mathrm{~N}, 140.4072 \mathrm{~W}$	11.2 triple
3 Citlaltepetl	5635	Mexico	$19.0305 \mathrm{~N}, 97.2698 \mathrm{~W}$	volcano
4 Mt. St. Elias	5489	St. Elias Range	60.2927 N, 140.9307 W	17.4 quad.
5 Pococatepetl	5410	Mexico	19.0225 N, 98.6278 W	volcano
6 Mt. Foraker	5304	Alaska Range	$62.9605 \mathrm{~N}, 151.3992 \mathrm{~W}$	14.8 quad.
7 Mt. Lucania	5260	St. Elias Range	$61.0215 \mathrm{~N}, 140.4661 \mathrm{~W}$	10.5 triple
8 Iztaccihuatl	5230	Mexico	$19.1792 \mathrm{~N}, 98.6419 \mathrm{~W}$	volcano
9 King Peak	5173	St. Elias Range	$60.5834 \mathrm{~N}, 140.6561 \mathrm{~W}$	8.8 triple
$10 \mathrm{Mt}$. Bona	5044	St. Elias Range	61.3845 N, 141.7529 W	32.9 triple
11 Mt. Steele	5020	St. Elias Range	$61.0929 \mathrm{~N}, 140.3118 \mathrm{~W}$	15.4 quad.
12 Mt. Blackburn	4996	Wrangell Mtns.	61.7305 N, 143.4031 W	11.7 volcano (eroded)
13 Mt . Sanford	4949	Wrangell Mtns.	$62.2132 \mathrm{~N}, 144.1292 \mathrm{~W}$	volcano
14 Mt. Wood	4860	St. Elias Range	61.2323 N, 140.5139 W	7.9 triple
15 Mt. Vancouvver	4812	St. Elias Range	$60.3589 \mathrm{~N}, 139.6980 \mathrm{~W}$	9.0 triple
$16 \mathrm{Mt}$. Slaggard	4742	St. Elias Range	$61.1723 \mathrm{~N}, 140.5869 \mathrm{~W}$	22.4 triple
17 Nevado de Tolư	4690	Mexico	$19.1020 \mathrm{~N}, 99.7676 \mathrm{~W}$	Volcano
18 Mt. Fairweather	4671	St. Elias Range	$58.9064 \mathrm{~N}, 137.5265 \mathrm{~W}$	13.5 triple
19 Mt. Hübbard	4557	St. Elias Range	$60.3189 \mathrm{~N}, 139.0719 \mathrm{~W}$	6.6 triple
20 Mt . Bear	4520	St. Elias Range	$61.2834 \mathrm{~N}, 141.1433 \mathrm{~W}$	7.4 triple
21 Mt. Walsh	4506	St. Elias Range	$61.0034 \mathrm{~N}, 140.0172 \mathrm{~W}$	3.2 triple
22 Mt. Hunter	4442	Alaska Range	62.9496 N, 151.0921 W	6.4 triple
23 MatlalcueyetI	4430	Mexico	$19.2302 \mathrm{~N}, 98.0316 \mathrm{~W}$	volcano
24 Mt. Whitney	4421	Sierra Nevada	$36.5786 \mathrm{~N}, 118.2920 \mathrm{~W}$	1.2 quad.
25 Mt. Alverstone	4420	St. Elias Range	$60.3519 \mathrm{~N}, 139.0752 \mathrm{~W}$	33.1 triple
26 University Peak	4410	St. Elias Range	$61.3272 \mathrm{~N}, 141.7867 \mathrm{~W}$	3.6 triple
27 Mt . Elbert	4401	Sawatch R., CO	39.1178 N, 106.4454 W	4.2 triple
28 Mt. Massive	4398	Sawatch R., CO	39.1875 N, 106.4757 W	2.5 tríple
29 Mt. Harvard	4397	Collegiate Pks., CO	$38.9244 \mathrm{~N}, 106.3207 \mathrm{~W}$	2.8 triple
30 Mt. Ranier	4394	Cascade Range	$46.8521 \mathrm{~N}, 121.7579 \mathrm{~W}$	volcano
31 Mt. Williamson	4386	Sierra Nevada	$36.6559 \mathrm{~N}, 118.3111 \mathrm{~W}$	8.3 quad.
32 McArthur Peak	4380	St. Elias Range	$60.6061 \mathrm{~N}, 140.2160 \mathrm{~W}$	4.1 triple
33 La Plata Peak	4379	Collegiate Pks., CO	$39.0294 \mathrm{~N}, 106.4729 \mathrm{~W}$	3.2 triple
34 Blanca Peak	4374	Sangre de Cristo R., CC	37.5775 N, 105.4857 W	6.6 quad.
35 Uncompahgre Peak	4365	San Juan R., CO	$38.0717 \mathrm{~N}, 107.4621 \mathrm{~W}^{-}$	0.9 triple

36 Creston Peak	4359	Sangre de Cristo, CO	37.9668 N, 105.5855 W	6.0	quad.
37 Mt . Lincoln	4357	Mosquíto R., CO	$39.3515 \mathrm{~N}, 106.1116 \mathrm{~W}$	2.0	triple
38 Castle Peak	4352	Elk Mtns., CO	$39.0097 \mathrm{~N}, 106.8614 \mathrm{~W}$	12.4	quad.
39 Grays Peak	4352	Front R., CO	$39.6339 \mathrm{~N}, 105.8176 \mathrm{~W}$	4.4	quad.
40 Mt . Antero	4351	Sawatch R., CO	$38.6741 \mathrm{~N}, 106.2462 \mathrm{~W}$		triple
41 Mt. Evans	4348	Front R., CO	$39.5883 \mathrm{~N}, 105.6438 \mathrm{~W}$	0.8	triple
42 Longs Peak	4346	Front R., CO	$40.2550 \mathrm{~N}, 105.6151 \mathrm{~W}$	5.5	triple
43 Mt. Wilson	4344	San Miguel Mtns., CO	37.8391 N, 107.9916 W	3.6	quad.
44 White Mountain Pk.	4344	White Mtns., CA	$37.6341 \mathrm{~N}, 118.2557 \mathrm{~W}$	9.9	triple
45 North Palisade	4343	Sierra Nevada, CA	37.0943 N, 118.5147 W		ridge only
46 Mt. Princetón	4329	Collegiate Pks., CO	$38.7492 \mathrm{~N}, 106.2424 \mathrm{~W}^{-}$	4.2	triple
$47 \mathrm{Mt}$. Yale	4329	Collegiate Pks., CO	$38.8442 \mathrm{~N}, 106.3138 \mathrm{~W}$	3.9	triple
48 Mt. Shasta	4322	Cascade Range, CA	$41.4092 \mathrm{~N}, 122.1949 \mathrm{~W}$		volcano
49 Maroon Pk.	4317	Elk Mtns., CO	$39.0708 \mathrm{~N}, 106.9890 \mathrm{~W}$	20.3	
$50 \mathrm{Mt}$. Wrangell	4317	Wrangell M	$62.0059 \mathrm{~N}, 144.0187 \mathrm{~W}$		volcano
9 peaks are constructional; 1 peak is ridge-only. Triple/quad $=98 \%$.					
GROUP 3: Top 20 peaks of European Alps (100 m prominence); all are above the glacial limit					
Rank Name	Elev. (m)	Region	Location	Shortest Ridge	Peak type
1 Mont Blanc	4808	Alps	$45.8336 \mathrm{~N}, 6.8650 \mathrm{E}$	4.7	triple
2 Monte Rosa	4634	Alps	$45.9368 \mathrm{~N}, 7.8671 \mathrm{E}$	2.3	triple
3 Zünsteínspitze	4563	Alps	45.9319 N, 7.8714 E	1.2	triple
4 Dom	4545	Alps	46.0950 N, 7.8600 E	3.7	quad.
5 Liskamm	4527	Alps	45.9225 N, 7.8356 E	2.9	triple
6 Weisshorn	4506	Alps	46.1017 N, 7.7161 E	4.5	triple
7 Matterhorn	4478	Alps	$45.9764 \mathrm{~N}, 7.6583 \mathrm{E}$	4.2	quad.
8 Dent Blanche	4356	Alps	46.0342 N, 7.6119 E	29.8	quad.
9 Nädēlhorn	4327	Alps	46.1088 N, 7.8642 E	7.3	triple
10 Grand Combin	4314	Alps	45.9375 N, 7.2992 E	12.5	triple
11 Lenzspitze	4294	Alps	$46.1046 \mathrm{~N}, 7.8684 \mathrm{E}$	3.0	triple
12 Finsteraarhorn	4274	Alps	46.5375 N, 8.1260 E	1.7	triple
13 Zinalrothorn	4221	Alps	46.0647 N, 7.6900 E	7.4	quad.
14 Grandes Jorasses	4208	Alps	$45.8689 \mathrm{~N}, 6.9881 \mathrm{E}$	2.5	triple
15 Alphubel	4206	Alps	46.0629 N, 7.8639 E	1.2	triple
16 Rimpfischhorn	4199	Alps	$46.0231 \mathrm{~N}, 7.8839 \mathrm{E}$	0.5	triple
17 Strahlhorn	4190	Alps	$46.0132 \mathrm{~N}, 7.9018 \mathrm{E}$	3.7	quad.
18 Dent d'Herens	4171	Alps	$45.9701 \mathrm{~N}, 7.6051 \mathrm{E}$		ridge only
19 Breithorn	4164	Alps	$45.9411 \mathrm{~N}, 7.7472 \mathrm{E}$	1.1	triple
20 Jungfrau	4158	Alps	46.5368 N, 7.9626 E	4.0	triple
\# of ridge-only peaks $=1$. Triple/quad peaks $=95 \%$					
GROUP 4: Highest non-volcanic peaks of countries/Islands of SE Asia and Pacific; all fluvial.					
Rank Name	Elev. (m)	Region	Location	Shortest Ridge	Peak type
1 Mt. Wilhelm	4509	Papua NG	$5.8000 \mathrm{~S}, 145.0333 \mathrm{E}$	7.8	quad.
2 Gunung Kinabalu	4095	Borneo	$6.0724 \mathrm{~N}, 116.5616 \mathrm{E}$		ridge only (rounded)
3 Yusihan	3952	Taiwan	$23.4700 \mathrm{~N}, 120.9573 \mathrm{E}$	9.1	quad.
4 Phou Bia	2819	Laos	18.9796 N, 103.1515 E	10.4	quad.
5 Jirisan	1915	South Korea (mainland	35.3370 N, 127.7167 E	3.8	triple
6 Hokusuihaku-san	2522	North Korea (non-volc.	40.7105 N, 127.7505 E	8.5	triple
7 Doi Inthanon	2565	Thailand	$18.5922 \mathrm{~N}, 98.4867 \mathrm{E}$	5.3	triple (but rounded)
8 Phonom Aural	1813	Cambodia	$12.0333 \mathrm{~N}, 104.1667 \mathrm{E}$	6.9	triple
9 Fansipan	3143	Vietnam	$22.3033 \mathrm{~N}, 103.7750 \mathrm{E}$	8.7	tríple
10 Pulag	2922	Luzon	16.5971 N, 120.8995 E	1.4	triple
1 peak is ridge-only. Triple/quad $=90 \%$.					
GROUP 5: Highest peaks (5) in Australia and highest peaks (5) in Victoria, AU (all fluvial)					
Rank Name	Elev. (m)	Region	Location	Shortest Ridge	Peak type
1 Mt. Koscuíszko	2228	New South Wales	36.4559 S, 148.2633 E		ridge only (rounded)
2 Mt. Townsend	2209	New South Wales	36.4228 S, 148.2586 E	6.9	triple (low relief)
3 Mt. Twynam	2196	New South Wales	36.3933 S, 148.3147 E	3.0	quad. (low relief)
4 Rams Head	2190	New South Wales	$36.3930 \mathrm{~S}, 148.3150 \mathrm{E}$	2.9	triple (low relief)
5 Jagungal	2061	New South Wales	$36.1486 \mathrm{~S}, 148.3877 \mathrm{E}$		ridge only (rounded)
6 Mt. Bagong	1986	Víctoria	$36.7333 \mathrm{~S}, 147.3060 \mathrm{E}$	3.8	quad.
7 Mt. Feathertop	1922	Victoria	36.8948 S, 147.1365 E	4.8	triple
8 Mt. Hotham	1861	Victoria	36.9759 S, 147.1312 E	1.6	quad.
9 Mt. McKay	1849	Victoria	36.8745 S, 147.2431 E	0.9	triple (low relief)
10 Mt . Buller	1805	Victoria	37.1448 S, 146.4257E		ridge only
3 peaks are ridge-only. Triple/quad $=\mathbf{7 0 \%}$.					

GROUP 6: Highest non-volcanic peaks of countries in Central/South America (* = glacial)					Peak type
GROUP 6: Highest non-volcanic peaks Rank Name \quad Elev. (m)		Region	Location	Shortest Ridge	
1 Cerro Chirripo	3820	Costa Rica	9.4841 N, 83.4887 W	8.7	triple
2 Mogoton	2107	Nicaràuguà	$13.7629 \mathrm{~N}, 86.3985 \mathrm{~W}$	2.9	triple
3 Cristobal Colon*	5700	Colombia	$10.8383 \mathrm{~N}, 73.6867 \mathrm{~W}$	22.7	quad.
4 Bolivar	4981	Venezuela	$8.5411 \mathrm{~N}, 71.0465 \mathrm{~W}$	5.3	quad.
5 Neblina	2994	Brazil	0.8005 N, 66.0075 W	6.0	quad.
6 Cerro Pero	842	Paraguay	$25.9017 \mathrm{~N}, 56.1600 \mathrm{~W}$	5.7	triple
7 Aconcagua*	6962	Argentina	32.6534 S, 70.0111 W	12.1	quad.
8 Picos de Barroso*x	5142	Andes, Arg/Chile	34.2868 S, 70.0332 W	12.6	triple
9 Yerupaja*	6635	Peru	10.2687 S, 76.9056 W	2.7	triple
10 IIlimani*	6438	Bolivia	$16.6333 \mathrm{~S}, 67.7908 \mathrm{~W}$	4.5	quad.
^approximate highest non-volcanic No peaks are ridge-only. Triple/quad $=100 \%$.					
GROUP 7: All peaks over 1500 m with prominence> 150 m in the San Gabriel Mtns.,				vial)	
Rank Name	Elev. (m)	Region	Location	Shortest Ridge	Peak type
1 Ma. San Antonio	3051	San Gabriel Mtns.	$34.2891 \mathrm{~N}, 117.6462 \mathrm{~W}$	15.0	quad.
2 Pine Mt.	2947	San Gabriel Mtns.	$34.3137 \mathrm{~N}, 117.6443 \mathrm{~W}$	8.2	triple
3 Dawson Pk.	2914	San Gabriel Mens.	$34.3033 \mathrm{~N}, 117.6362 \mathrm{~W}$		triple
4 Mt. Baden Powell	2862	San Gäbriel Mtns.	$34.3585 \mathrm{~N}, 117.7646 \mathrm{~W}$		triple
5 Throop Pk.	2786	San Gabriel Mtns.	34.3506 N, 117.7992 W	5.4	quad.
6 TTelegraph Pk.	2738	San Gabriel Mtns.	$34.2616 \mathrm{~N}, 117.5985 \mathrm{~W}$	4.2	quad.
7 Cucamonga Pk.	2703	San Gabriel Mtns.	34.2226 N, 117.5853 W	6.7	triple
8 Ontario Mt.	2651	San Gabriel Mtns.	34.2277 N, 117.6241 W		ridge only
9 Timber Mt.	2522	San Gabriel Mtns.	34.2448 N, 117.5935 W	2.2	quad.
10 Mt. Williamson	2516	San Gabriel Mtns.	34.3754 N, 117.8639 W	0.9	triple
11 Mt. Isilip	2508	San Gäbriel Mtns.	$34.3452 \mathrm{~N}, 117.8399 \mathrm{~W}$	2.0	triple
12 Waterman Mt.	2445	San Gabriel Mtns.	$34.3364 \mathrm{~N}, 117.9368 \mathrm{~W}$		ridge only (rounded)
13 Iron Mtn.	2438	San Gabriel Mtns.	34.2884 N, 117.7134 W	4.3	quad.
14 no name	2432	San Gabriel Mtns.	34.3898 N, 117.9092 W	3.6	triple
15 Pallett Mtn.	2372	San Gäbriel Mtns.	34.3856 N, 117.8855 W		triple
16 Twin Peks East	2364	San Gabriel Mtns.	$34.3159 \mathrm{~N}, 117.9267 \mathrm{~W}$		triple
17 Kratka Ridge	2290	San Gabriel Mtns.	$34.3469 \mathrm{~N}, 117.8991 \mathrm{~W}$	1.7	triple
18 Table Mtn.	2281	San Gabriel Mtns.	$34.3824 \mathrm{~N}, 117.6851 \mathrm{~W}$		ridge only
19 Winston Peak	2270	San Gabriel Mtns.	34.3578 N, 117.9359 W		ridge only (rounded)
20 Pacifico	2163	San Gabriel Mtns.	$34.3820 \mathrm{~N}, 118.0346 \mathrm{~W}$	7.0	triple
21 Mt. Gleason	1989	San Gabriel Mtns.	$34.3762 \mathrm{~N}, 118.1769 \mathrm{~W}$		triple
22 Bare Mt.	1924	San Gäbriel Mtns.	34.3469 N, 117.9925 W	3.8	triple
23 Strawberry Pk.	1878	San Gabriel Mtns.	34.2835 N, 118.1206 W	0.8	quad.
24 San Gabriel Pk.	1857	San Gabriel Mens.	$34.2435 \mathrm{~N}, 118.0984 \mathrm{~W}$	1.6	quad.
25 Mt. Lawlor	1814	San Gabriel Mtns.	$34.2706 \mathrm{~N}, 118.1039 \mathrm{~W}$	1.5	quad.
26 Sunset Pk.	1767	San Gabriel Mtns.	34.2167 N, 117.6894 W		triple
27 Rattlesnake Pk.	1763	San Gäbriel Mtns.	$34.2719 \mathrm{~N}, 117.7769 \mathrm{~W}$	3.3	quad.
28 Mt. Wilson	1739	San Gabriel Mtns.	$34.2239 \mathrm{~N}, 118.0615 \mathrm{~W}$		triple
29 Iron Mtn.	1716	San Gäbriel Mtns.	34.3488 N, 118.2292 W	2.6	quad.
30 Condor Peak	1651	San Gabriel Mtns.	34.3256 N, 118.2193 W	4.3	triple
31 Josephine Pk.	1643	San Gäbriel Mtns.	34.2870 N, 118.1542 W		triple
32 Monrovia Pk.	1640	San Gabriel Mtns.	34.2138 N, 117.9685 W	6.3	triple
33 Mt. Lukens	1542	San Gabriel Mtns.	34.2691 N, 118.2391 W		triple
34 Snow Mt.	1508	San Gäbriel Mtns.	34.3958 N, 118.2720 W		triple
35 Magic Mṫn.	1484	San Gabriel Mens.	34.3865 N, 118.3293 W	3.2	quad.
36 Yerba Buena Ridge	1181	San Gabriel Mtns.	34.3042 N, 118.2983 W	2.9	quad.
4 peaks are ridge-only. Triple/quad $=89 \%$.					
GROUP 8: All peaks with prominence $>500 \mathrm{~m}$ in the Mt. Everest area of Himlaya (see Figure) (all glacial)					
Rank Name	Elev. (m)	Region	Location	Shortest Ridge	Peak type
1 Everest	8848	Himalaya	27.9881 N, 86.9253 E		triple
2 Lhotse	8516	Himalaya	27.9617 N, 86.9331 E		triple
3 Makalu	8485	Himalaya	27.8897 N, 87.0889 E		triple
4 Nuptse	7864	Himalaya	27.9675 N, 86.8869 E		triple
5 Chomo Lonzo	7804	Himāāàa	27.9306 N, 87.1078 E		triple, almost quad.
6 Changtse	7543	Himalaya	28.0247 N, 86.9142 E	5.0	quad.
7 Chamlong	7284	Himalaya	27.7761 N, 86.9799 E		triple
8 Kharta Phu	7184	Himalaya	$28.0637 \mathrm{~N}, 86.9767 \mathrm{E}$		triple
9 Baruntse	7128	Himalaya	27.8716 N, 86.9802 E		rídge only
10 no name	6848	Himalaya	$28.0692 \mathrm{~N}, 86.8994 \mathrm{E}$		triple
11 Hongkü Chüli	6790	Himalăya	27.8175 N, 87.0089 E		triple
12 Ama Däblàm	6776	Hiimälàa	27.8616 N, 86.8614 E	3.4	quã.

13 Katenga	6735	Himalaya	27.7922 N, 86.8167 E	1.1 triple
14 Kyashar	6723	Himalaya	$27.7549 \mathrm{~N}, 86.8229 \mathrm{E}$	1.8 triple
15 Tutse	6694	Himalaya	$27.7720 \mathrm{~N}, 87.0989 \mathrm{E}$	2.9 triple
16 no name	6693	Himalaya	$27.9576 \mathrm{~N}, 87.0165 \mathrm{E}$	3.3 triple
17 no name	6688	Himalaya	$27.8268{ }^{\circ}$, $87.0483{ }^{\text {E }}$	2.4 triple
18 Cho Pulo	6658	Himalaya	$27.9195 \mathrm{~N}, 86.9811 \mathrm{E}$	1.9 triple
19 no name	6598	Himalaya	$27.7743 \mathrm{~N}, 86.9087 \mathrm{E}$	2.5 triple
20 Thamserku	6568	Himalaya	27.7899 N, 86.7852 E	3.7 triple
21 no name	6503	Himalaya	27.8078 N, 86.8668 E	2.8 quad.
22 no name	6380	Himalaya	27.8366 N, 87.1415 E	2.9 triple
23 Mt. Kanguru	6334	Himãāya	27.7309 N, 86.7893 E	6.2 triple
24 no name	6252	Himalaya	27.7273 N, 87.0074 E	25.8 triple
25 Tuolakangboqie	6121	Himalaya	28.0688 N, 87.1642 E	1.0 triple
1 peaks is ridge-only. Triple/quad $=96 \%$. Six peaks in bold are counted above for the synthesis below.				
Summary $=255$ peaks checked, 9 are constructional, 21 are ridge-only, 91% are triple-junction peaks.				

Table DR-2: Location information.

Location	Denudation rate (mm/yr)*	References
Coast Range, B.C.	0.5	1,2
St. Elias, AK	1.5	3
Mt. Everest, Nep.	1.0	4
Alps, Swtz.	0.2	5,6
Highlands, Scot.	0.05	7,8
Chugach R., AK	0.2	9
Alaska R., AK	1.0	10
Nanga Parbat, Pak.	5.0	11,12
Tierra d. Fuego	1.0	13,14
S. Alps, NZ	3.0	15,16
Smoky Mtn., NC	0.04	17
San Gabriel Mtn., CA	2.0	18
Central Range, Taiw.	3.0	19,20
Caucasus, Russ./Georg.	0.5	21
Atlas Mtns., Morr.	0.2	22,23
Bermejo, Ecuad.	0.3	24,25
Lesser Himal., Nep.	0.3	26,27
Nanga Parbat, Pak.	1.0	11,12
Marsyandi, Nep.	3.0	28,29
King Range, CA	0.5	30

Long-term erosion rates were interpreted from combinations of references and data types spanning a range of timescales, including thermochromometry, cosmochronometry, and sediment yields. In some cases, the rates used are reported directly from papers, but in other cases data were re-interpreted to provide a simple estimate of exhumation rate. This commonly required assumption of geothermal gradient and averaging regional data or using a geologically-controlled time of onset of orogenesis and the total exhumation since that time. For example, if low-temperature apatite (U-Th)/He cooling ages have not been reset in an area with a moderately high geothermal gradient and in which exhumation began 3 Ma , the total exhumation possible is likely $<1.5 \mathrm{~km} / 3 \mathrm{Ma}=<0.5 \mathrm{~mm} / \mathrm{yr}$. In other cases, exhumation rates were assumed based on the gradient of age-elevation relationships. In many cases, constraints were not available in the exact area of the ridge maps, so extrapolation from neighboring areas was required (often from multiple sources and directions). As a result, the erosion rates used here should be treated as poorly constrained (e.g. $\pm 100 \%$). Although this is a large error, the erosion rates should be approximately correct (i.e. order of magnitude) and thus provide the means for at least a first-order comparison with ridge network metrics.

References

1) Ehlers, T.A., Farley, K.A., Rusmore, M.E., and Woodsworth, G.J., 2006, Apatite (U-Th)/He signal of largemagnitude accelerated glacial erosion, British Columbia, Geology, 34, 765-768.
2) Densmore, M.S., Ehlers, T.A., and Woodsworth, G.J., 2007, Effect of alpine glaciation on thermochronometer age-elevation profiles, Geophys. Res. Lett., 34, L02502.
3) Berger, A.L., and Spotila, J.A., 2008, Denudation and deformation of a glaciated orogenic wedge: The St. Elias orogen, Alaska, Geology, 36, 523-526.
4) Bergman, S.C., Coffield, D.Q., Donelick, R., Corrigan, J., Talbot, J., Cerveny, P., and Kelley, S., 1993, Late Cenozoic compressinoal and extensional cooling and exhumation of the Qomolagma (Mt. Everest) region, Nepal, Geol. Soc. Amer. Abstr. with Programs, 25, 6, A-176.
5) Cederbom, C.E., Sinclair, H.D., Schlunegger, F., and Rahn, M.K., 2004, Climate-induced rebound and exhumation of the European Alps, Geology, 32, 709-712.
6) Champagnac, J.D., Schlunegger, F., Norton, K., Blanckenburg, F., Abbuhl, L.M., and Schwab, M., 2009, Erosion-driven uplift of the modern Central Alps, Tectonophysics, 474, 236-249.
7) Thomson, K., Underhill, J.R., Green, P.F., Bray, R.J., and Gibson, H.J., 1999, Evidence from apatite fission track analysis for the post-Devonian burial and exhumation history of the northern Highlands, Scotland, Marine and Petroleum Geology, 16, 27-39.
8) Persano, C., Stuart, F.M., Barfod, D.N., Bishop, P., ad Brown, R.W., 2005, Constraining denudation in Scotland by using a combination of low temperature thermochronometers, Goldschmidt Conference Abstracts, Geochimica et Cosmochimica Acta, 299.
9) Spotila, J.A., and Berger, A.L., 2010, Exhumation at orogenic indentor corners under long-term glacial conditions: Example of the St. Elias Orogen, Southern Alaska, Tectonophysics, 490, 241-256.
10) Benowtiz, J.A., Layer, P., Armstrong, P., Perry, S., Haeussler, P., Fitzgerald, P., and VanLaningham, S., 2011, Spatial variations in focused exhumation along a continental-scale strike-slip fault: The Denali fault of the eastern Alaska Range, Geosphere.
11) Zeitler, P.K., Koons, P.O., Bishop, M., Chamberlain, and 16 others, 2001, Crustal reworking at Nanga Parbat, Pakistan; metamorphic consequences of thermal-mechanical coupling facilitated by erosion, Tectonics, 20, 712-728.
12) Schneider, D.A., Zeitler, P.K., Kidd, W.S.F., Edwards, M.A., 2001, Geochronology constraints on the tectonic evolution and exhumation of Nanga Parbat, western Himalayan syntaxis, revisited, J. Geology, 109, 563-583.
13) Thomson, S.N., 2002, Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes $42^{\circ} \mathrm{S}$ and $46^{\circ} \mathrm{S}$: An appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone, Geol. Soc. Amer. Bull., 114, 1159-1173.
14) Thomson, S.N., Brandon, M.T., Tomkin, J.H., Reiners, P.W., Vasquez, C., and Wilson, N., 2010, Glaciation as a destructive and constructive control on mountain building, Nature, 467, 313-317.
15) Little, T.A., Cox, S., Vry, J.K., and Batt, G., 2005, Variations in exhumation level and uplift rate along the oblique-slip Alpine fault, central Southern Alps, New Zealand, Geol. Soc. Amer. Bull., 117, 707-723.
16) Batt, G.E., Braun, J., Kohn, B.P., and McDougall, I., 2000, Thermochronological analysis of the dynamics of the Southern Alps, New Zealand, Geol. Soc. Amer. Bull., 112, 250-266.
17) Matmon, A., Bierman, P., Larsen, J., Southworth, S., Pavich, M., and Caffee, M., 2003, Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains, Geology, 31, 155158.
18) Spotila, J.A., House, M.A., Blythe, A.E., Niemi, N.A., Bank, G.C., 2002. Controls on the erosion and geomorphic evolution of the San Bernardino and San Gabriel Mountains, Southern California, in Contributions to crustal evolution of the Southwestern United States, Spec. Pap. Geol. Soc. Am., 365, 205-230.
19) Beyssac, O., Simoes, M., Avouac, J.P., Farley, K.A., Chen, Y.-G., Chan, Y.-C., and Goffe, B., 2007, Late Cenozoic metamorphic evolution and exhumation of Taiwan, Tectonics, 26, TC6001.
20) Fuller, C.W., Willett, S.D., Fisher, D., and Lu, C.Y., 2006, A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry, Tectonophysics, 425, 1-24.
21) Vincent, S.J., Carter, A., Lavrishchev, V.A., Rice, S.P., Barabadze, T.G., and Hovius, N., 2010, The exhumation of the western Greater Caucasus: a thermochronometric study, Geol. Mag., 148, 1-21.
22) Balestrieri, M.L., Moratti, G., Bigazzi, G., and Algouti, A., 2009, Neogene exhumation of the Marrakech High Atlas (Morocco) recorded by apatite fission-track analysis, Terra Nova, 21, 75-82.
23) Delcaillau, B., Laville, E., Amhrar, M., Namous, M., Dugue, O., and Pedoja, K., 2010, Quaternary evolution of the Marrakech High Atlas and morphotectonic evidence of activity along the Tizi n'Test fault, Morocco, Geomorphology, 118, 262-279.
24) Spikings, R.A., Winkler, W., Hughes, R.A., and Handler, R., 2005, Thermochronology of allochthonous terranes in Ecuador: Unravelling the accretionary and post-accretionary history of the Northern Andes, Tectonophysics, 399, 195-220.
25) Spikings, R.A., and Crowhurst, P.V., 2004, (U-Th)/He thermochronometric constraints on the late Miocene-Pliocene tectonic development of the northern Cordillera Real and the Interandean Depression, Ecuador, J. S. Amer. Earth Sci., 17, 239-251.
26) Patel, R.C., Kumar, Y., Lal, N., and Kumar, A., 2007, Thermotectonic history of the Chiplakot Crystalline Belt in the Lesser Himalaya, Kumaon, India: Constraints from apatite fission-track thermochronology, J. Asian Earth Sci., 29, 430-439.
27) Herman, F., Copeland, P., Avouac, J.-P., and Bollinger, L., 2010, Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography, J. Geophys. Res., 114, B06407.
28) Lave, J., and Avouac, J.P., 2001, Fluvial incision and tectonic uplift across the Himalayas of central Nepal, J. Geophys. Res., 106, 26,561-26,591.
29) Blythe, A.E., Burbank, D.W., Carter, A., Schmidt, K., Putkonen, J., 2007, Plio-Quaternary exhumation history of the central Nepalese Himalaya: 1. Apatite and zircon fission track and apatite (U-Th)/He analyses, Tectonics, 26, TC3002.
30) Dumitru, T.A., 1991, Major Quaternary uplift along the northermost San Andreas fault, King Range, northwestern California, Geology, 19, 526-529.

Table DR-3: Results from ridge profiles.

Location	DJ=pks. Max=DJ-pks. Avg. slope	$\boldsymbol{\Psi}_{1}$	$\boldsymbol{\Psi}_{\mathbf{2}}$		
	Glacial				
Coast Range, B.C.	55%	31%	10.7°	0.24	1.92
St. Elias, AK	73%	32%	9.1°	0.20	1.74
Mt. Everest, Nepal	83%	38%	19.3°	0.20	3.20
Alps, Switzerland	71%	43%	10.9°	0.13	2.05
Highlands, Scotland	88%	23%	6.7°	0.21	1.45
Average	74%	33%	11.3°	0.20	2.07
		Fluvial			
Smoky Mtn., NC	68%	59%	1.6°	0.32	1.22
San Gabriel Mtn., CA	68%	50%	9.3°	0.32	1.76
Central Range, Taiwan	72%	52%	7.1°	0.30	1.49
Caucasus, Georgia	73%	62%	8.1°	0.25	1.62
Atlas Mtns., Morocco	62%	35%	7.8°	0.30	1.51
Average	69%	52%	6.8°	0.30	1.52
Overall average	$\mathbf{7 2 \%}$	$\mathbf{4 3 \%}$	$\mathbf{9 . 0 ^ { \circ }}$	$\mathbf{0 . 2 5}$	$\mathbf{1 . 8 0}$

DJ=peaks: percent of divide junctions that occur at peaks.
Max=DJ-peaks: percent of all elevation maxima that are dividejunction peaks.
Avg. slope: slope of the ridge along the profile
Ψ_{1} : topographic roughness \#1; unit distance (relative to entire profile over which half of the ridge's relief is attained (low value = rougher).
Ψ_{2} : topographic roughness \#2; vertical irregularity (akin to sinuosity) of profile, measured at $8 x$ vertical exaggeration (high value $=$ rougher).

Table DR-4: Results from ridge maps.

	$\rho\left(\mathbf{k m}^{-1}\right)$	$\gamma\left(\mathbf{k m}^{-2}\right)$	$\chi\left(\mathrm{km}^{-1}\right)$	Sin.	Relief (m)	Denud.
Glacial						
Coast Range, British Co.	0.358	0.029	0.080	1.33	4019	0.5
St. Elias, AK	0.236	0.018	0.078	1.23	2502	1.5
Mt. Everest, Nepal	0.285	0.024	0.083	1.22	7450	1.0
Alps, Switzerland	0.268	0.022	0.084	1.23	3920	0.2
Highlands, Scotland*	0.279	0.014*	0.050*	-	1060	0.05
Chugach Range, AK*	0.244	0.012*	0.051*	1.35	2139	0.2
Alaska Range, AK	0.254	0.021	0.082	1.40	5493	1.0
Nanga Parbat, Pakistan	0.308	0.033	0.107	1.21	5526	5.0
Tierra d. Fuego	0.238	0.017	0.073	1.35	2520	1.0
S. Alps, New Zealand	0.269	0.025	0.093	1.21	3680	3.0
Average	0.274	0.022	0.078	1.28		
R^{2} vs. relief**	0.11	0.44	0.46	0.07		
R^{2} vs. denudation rate**	0.03	0.48	0.63	0.25		
Fluvial						
Smoky Mtn., NC	0.235	0.019	0.082	1.19	1750	0.04
San Gabriel Mtn., CA	0.311	0.025	0.080	1.24	2580	2.0
Central Range, Taiwan	0.302	0.028	0.093	1.27	3750	3.0
Caucasus, Georgia	0.299	0.028	0.094	1.18	3615	0.5
Atlas Mtns., Morocco*	0.282	0.016*	0.055*	1.19	3367	0.2
Bermejo, Ecuador*	0.304	0.018*	0.058*	1.24	3540	0.3
Lesser Himalaya, Nepal	0.257	0.017	0.065	1.23	4360	0.3
Nanga Parbat, Pakistan	0.307	0.024	0.078	1.20	3700	1.0
Marsyandi, Nepal	0.236	0.016	0.068	1.20	7150	3.0
King Range, CA	0.272	0.019	0.070	1.18	1113	0.5
Average	0.281	0.021	0.074	1.21		
R^{2} vs. relief**	0.05	0.04	0.03	0.03		
R^{2} vs. denudation rate**	0.01	0.11	0.12	0.27		
Overall average	0.278	0.021	0.076	1.25		
ρ : ridge density, or total length of ridges divided by area.						
γ : junction density, or total number of divide junctions divided by map area. χ : divide connectivity, number of divide junctions per unit length of ridges.						
Sin: sinuosity, irregular ridge length divided by linear ridge length.						
Denud.: long-term denudation rate, mm/yr (see Table DR-2).						
*Note anomalously poor divide connectivity for these four outliers; see text.						
${ }^{* *}$ Correlation coefficients based on basic regressions between ρ, γ, χ, and sinuo						

Figure DR-1

The geometry of peaks. A) Hillslopes with parallel trends, even at the angle of repose (hillslope angle $=\delta$), will create a horizontal ridgeline. B) Oblique hillslopes (obliquity angle $=\gamma$) will generate an inclined ridgeline (ridgeline angle $=\theta$). In this example, hillsides at the angle of repose ($\delta=34^{\circ}$) that intersect by 24° (γ) will generate a ridgeline slope (θ) of 8°. C) Plot of increasing ridgeline slope with increasing obliquity between hillsides, for select hillslope gradients. D) Conceptual diagram illustrating how the competition of abutting basins, represented by the relative horizontal velocity of the headwall or channel head (U_{a} vs. U_{b}), should shape the intervening ridgeline. In this case, $U_{a}>U_{b}$ requires that the ridge migrate from left to right, although it is easy to envision a spectrum of possible scenarios. E) Illustration of peak "prominence". Prominence is defined as the relative height of a peak above the lowest contour that underlies it and no taller peak. The three peaks shown have prominence defined by the arrows. Note that although the middle peak may be very high, its prominence is simply the relative height of the peak above the saddle to its right. F) Two example ridgeline profiles with different scales of peak prominence. The parabolic ridge on the left has many peaks of small prominence, but only one peak that exceeds the prominence threshold indicated by the bar. The ridge on the right has lower mean elevation, but a higher number of prominent peaks, because of the low saddles. G) Illustration of measurement of third-shortest contributing divide. For the divide-junction circled, the path shown by dashed line would be measured as the third shortest divide. It is shorter than divides \#1 and \#2, but follows the primary divide leaving the junction as opposed to following a shorter secondary divide (e.g. \#3) down to base level.

Figure DR-2

Additional example images of prominent pyramidal peaks that occur at the junction of major ridges. The first five are from glacial settings, whereas Baden Powell, Yushan, and Twin Peaks are fluvial. Scales and aspects of each image are variable, as noted. Images were captured from GoogleEarth. Numbers refer to the group and peak number in Table DR-I.

Figure DR-3

Examples of pominent peaks identified in the global survey (numbers provided refering to Table DR-1) that would not classify as divide-juncton. These are characteristic examples of ridge-only peaks. In some cases, it may appear that a third contributing ridge exists, but on close examination these divides do not come within 0.2 km of the peak itself. All examples are from the Himalaya: A) Broad Peak (Group I, \#12), B) Teram Kangri (Group I, \#59), C) Baintha Brakk (Group 1, \#90), D) Muztagh Tower (Group I, \#94) (see Table DR-1). Scale bar represents 1 km in all cases.

Figure DR-4a Summary of all 10 ridgeline maps in fluvial locations. Locations are indicated by coordinates of highest peak in each area (triangle). An asterisk indicates that the peak is not a divide-junction peak at the scale of these maps; that is, it does not co-locate with a third-shortest contributing divide that is $>5 \mathrm{~km}$ long (note that this differes from the criteria used in Table 1, DR-1). North is vertical on all maps except Ecuador. The dashed lines enclosing the mapped areas are in some cases the boundary of a small ranges, but in others is arbitrary sampling of a larger area (normally following valleys). Red divides are profiles in Figure DR-5.

Figure DR-4b Summary of all 10 ridgeline maps in glacial locations.

Figure DR-5
All ridgeline profiles constructured in this study. Profiles are exaggerated 7.7 x and are from five fluvial and five glacial areas, as listed in Table 2. Note that these are not familiar swath or linear elevation profiles, but rather the elevation along the irregular line of mapped ridge. Secondary ridges that join the primary ridge from the flank are also plotted, color coded for direction from which they approach. The location of peaks and divide junctions (DJs) are indicated (green circle = peak; yellow box = triple junction; organge box = quadruple juction). Statistics are listed at the side and in Table 2. Arrows show the location of the four highest prominent peaks in each area.
Smoky Mtns., secondary, fluvial
*final statistics in Table 2 are weighted average of the two profiles.

4 of 4 biggest peaks are $D J s$
DJs that correspond to peaks $=20 / 31=66 \%$

Spotila, 2012, DR, page 19
Figure DR-5, cont.

(w) ио!ฺеләןә әбр!м
'sә!!

Figure DR-5, cont.

Figure DR-5, cont.

Spotila, 2012, DR, page 23
Figure DR-5, cont.

Figure DR-5, cont.

Spotila, 2012, DR, page 26
Figure DR-5, cont.

$$
\begin{aligned}
& \text { Avg. ridge elev. }=730 \mathrm{~m} \\
& \text { Avg. DJ elev. }=984 \mathrm{~m}(34.8 \% \text { higher }) \\
& \text { St. dev. of ridge elev. }= \pm 246 \mathrm{~m}(\pm 33.7 \%)
\end{aligned}
$$

