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Mechanical and Thermal Equilibrium 

For each numerical time step, the modelling involves direct solution of the equation of motion 

for every grid point including the effects of inertia: 

∂σ ij

∂xj

− ρgi = ρ
∂vi

∂t      (1) 

where vi is the velocity at each grid point, gi is the acceleration due to gravity, ρ is the mass 

density and σij is the stress in each grid element. In order to approximate quasi-static processes, 

the effects of inertia must be damped in a way akin to oscillations in a damped oscillator. 

Starting from a non-equilibrium state, the forces present at each grid point are summed (fi = 

ρδvi/δt). The corresponding out-of-balance forces and the mass at the grid point give rise to 

acceleration. The accelerations are integrated to calculate the new velocities that are used to 

determine the incremental strain, εij at each grid point. During a single time step, finite rotations 

also change the stress tensor, which is defined with respect to a fixed frame of reference. Before 

the incremental strains are determined, the stress tensor is updated to take these rotations into 

consideration as follows. 
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where Δt is the time step and ωij , the rotation per unit time, is given in terms of the velocity 

derivatives by 
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By using the constitutive law for elastic, viscous and plastic rheologies, the 
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corresponding stress increments are determined from the strain increments and the forces that 

they produce on the surrounding grid points are summed to determine the new out-of-balance 

forces and velocities. This dynamic response is then damped to approach a quasi-static 

equilibrium. FLAC is a very powerful technique for simulating non-linear rheological behaviour 

at relatively high resolution (the grid size is 1 km) because the explicit time-marching scheme 

does not require the storage of the large matrices that are needed for implicit methods. The time 

step of the calculation scales with the elastic-plastic property of our model. If the problem is 

purely elastic, the time step of the dynamic response scales with the velocity of the elastic wave 

propagating through the elements. This time step is of the order of a few hundredths of a second. 

Therefore, the resolution of the domains studied and the timescale needed for our numerical 

experiments would yield very long run times. In order to decrease the CPU time needed to 

perform the numerical experiments, we increase the speed of calculation by setting the boundary 

displacement per time step to a fraction of the grid spacing. To set the boundary displacement, 

we choose a ratio of boundary velocity to sound velocity of 10-6 – 10-5. We find that this ratio 

allows for fast enough runs and at the same time minimizes the error in the strain calculation.  

We model the evolution of the temperature as the model material deforms by using a 

Lagrangian formulation. We use an explicit finite difference method as used in FLAC. For each 

time step, the flow of heat through each element is calculated using Fourier’s law. The 

corresponding energy is then summed and the temperature is calculated at each grid points using 

the energy equation: 

ρCp
∂T
∂t

− ∇.(kT ) = H     (4) 

where T is the temperature, ρ is the density of the material, Cp is capacity calorific, k is the 

thermal conductivity tensor, and H is the heat production per unit volume. 



Re-meshing 

The initial mesh of the model is made of quadrilaterals subdivided into two pairs of 

superimposed constant-strain triangular zones. The use of triangular zones eliminates the 

problem of “hour-glassing” deformation sometimes experienced in finite differences. Since this 

method is Lagrangian (i.e., the numerical grid follows the deformations), the simulation of large 

deformation (locally more than 50%) involves re-meshing to overcome the problem of 

degradation of numerical precision when elements are distorted. We trigger re-meshing when 

one of the triangles in the grid elements are distorted enough that one of its angles becomes 

smaller than a given value. Every time re-meshing occurs, strains at each grid point are 

interpolated between the old deformed mesh and the new undeformed mesh using the barycentric 

coordinates of the nodes and Gauss points of the new elements in the old deformed mesh. The 

new state of strain is then used with the rheological laws to calculate the stress and resulting out-

of-balance forces to start the time step cycle again. Also every time we re-mesh, errors in the 

interpolation of the state variables result in an increase in the out-of-balance force, and artificial 

accelerations and oscillations may occur. For this reason the solution may not be in equilibrium 

immediately after re-meshing. We have tested different criteria to trigger re-meshing in order to 

reduce the oscillations and chose to use a minimum angle of 15° before re-meshing of the grid. 

 

Particle tracking. 

To guarantee that the boundary between the different physical phases in the model (i.e, quartz, 

plagioclase, olivine) do not diffuse at the time of re-meshing, we use particles distributed in the 

grid elements. These particles have both Eulerian and Lagrangian coordinates attached to the 

elements. When re-meshing occurs their Eulerian and barycentric (Lagrangian) coordinates and 



their physical properties are registered in the old grid. When the new regular grid is formed the 

Eulerian coordinate of the particles are used to calculate the new barycentric coordinates of the 

particles in the new grid elements. Then the physical properties are then properly assigned with 

no spatial diffusion. These particles are also used to track the pressure, strain and temperature 

history of the different phased through the deformation history. New particles are added or 

destroyed when needed (i.e. when few particles populate one given grid element or when a 

particle falls out of the new mesh boundaries after re-meshing). Similar re-meshing techniques 

have been developed in previous work showing the efficiency of this method (Babeyko and 

Sobolev, 2008; Burov and Yamato, 2008; Popov and Sobolev, 2008) 

 

Rheology 

For ductile material, we use the Maxwell viscoelastic constitutive equations relating the 

deviatoric stresses to the deviatoric strains. In this formulation τM, the Maxwell time at which 

viscous deformation starts after a period of elastic strain accumulation, is defined as tM = 2η/E 

where E is the Young’s modulus, η being the effective viscosity. The semi-brittle part of the 

crust is defined as a bimineralic rock with a strong phase (anorthosite) and a weak phase (quartz) 

(Lavier and Manatschal, 2006). We model semi-brittle fractures by the accumulation of strain 

(damage) in the middle crust. Where plastic strain accumulation occurs over a certain threshold, 

we assume that the shear zones become ductile by changing the rheology from that of anorthosite 

to quartz. Yield is initiated for an amount of work corresponding to 4.e6 J between temperatures 

of 300ºC and 450ºC corresponding to the onset of plasticity for quartz and the onset of plasticity 

for plagioclase (Lavier and Manatschal, 2006). Since anorthosite is brittle for a temperature as 

high as 450°C, the middle crust is brittle at greenschist to amphibole facies condition, which 



corresponds to the initial temperature conditions in the crust in the Pyrenean-Bay of Biscay 

system. When strain (elasto-plastic or visco-elastic deformation) accumulates in the middle crust, 

we assume that a weak phase, chosen as wet quartz, replaces anorthosite in the shear fracture. 

Also, after the initiation of the fracture, for a small amount of elasto-plastic or ductile strain (3 

%), we accumulate weak quartz in the fractured zone that will then flow in a visco-elastic 

manner (ductilely). This leads to the progressive formation of ductile shear zones in the models 

that act as semi-brittle fracture. This process is similar to what is described in the field for the 

formation and evolution of ductile shear zones (Manktelow and Pennachioni, 2005). 

The main assumption of our models is that the type of fracture observed in the semi-

brittle crust is resulting from the accumulation of plastic work. By plastic work, we mean any 

inelastic work accumulation in the semi-brittle media. This can be brittle plastic or viscous strain 

accumulation. We use a simple yield criterion based on Freudhental’s critical plastic work 

criterion (Freudhental, 1950) that depends on both the square root of the second invariant of 

stress, σ II  and strain, εII (also called Mises stress and strain) to simulate the formation of fracture 

as a function of plastic and viscous work (i.e. semi-brittle fracture): 

σ II

0

εc

∫ ε IIdε = C      (5) 

Where  is the critical strain at which fracture occurs and C is a constant set at 4.106 J to 

initiate semi-brittle fracture at high stresses, = 4.108 Pa for low strains (  = 0.01) and at low 

stresses = 4.106 Pa for high strains (  = 1). For this range of parameters, fracture can both 

initiate in the brittle crust for high stress environments and in the ductile crust for low stress 

environments. In the models presented here, we are concerned only by the evolution of 

deformation over thousands to millions of year. At this time scale nucleation of the shear zones 

εc

σ II εc

σ II εc



is instantaneous and we can assume that the stresses are constant over the time of damage and 

nucleation. The yield criterion becomes:  

Error! Bookmark not defined.Error! Bookmark not defined.  

     (6) 

σ IIεc = C
with
εc = εc

elastoplastic + εc
viscoelastic

 where is the square root of second invariant of stress at the Mohr-

Coulomb failure criteria and E is Young´s modulus. where  is the 

square root of the second invariant of the dislocation creep yield stress and C the viscosity at 

yield. 

σ Mohr
II

σ creep
II

ε elastoplastic ≈ σ Mohr
II / E

ε viscoelastic ≈ σ creep
II / C

When assuming pressure dependentError! Bookmark not defined. Mohr-Coulomb 

plastic behaviour for the brittle crust and viscous creep for the ductile crust, one can plot the 

yield stress envelope as a function of depth for a given geotherm in the classical Christmas tree 

shape (e.g., Kholstedt, et al., 1995). We showed that yield stress for semi-brittle fractures is 

dependent on critical work and accumulated strain. We can extend the principle of the yield 

stress envelope by plotting the ductile fracture criterion as yield stress as a function of total strain 

(Fig. DR1). To have a consistent yield stress between Mohr-Coulomb, viscous creep and ductile 

fracture we calculate the Mises stress,  for Mohr Coulomb and viscous creep at yield. Mohr 

Coulomb shear stress,  at yield is defined as: 

σ II

τ

τ = μσ n          (7) 

Where  is the normal stress,  the friction coefficient. In 2D the second invariant of the stress 

at yield is defined as a function of the principal stresses as: 

σ n μ

σ yield
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yieldσ 3
yield       (8) 



or as a function of shear stress at yield, with σ n =
σ1 + σ 3

2
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For viscous creep the second invariant at yield is defined as follow: 

 σ yield
II = A

1
n &ε II( )−

1
n e

Q
nRT       (10) 

where A is the creep law pre-exponent, Q the activation energy, the square root of the second 

invariant of the strain rate, n the creep law exponent, R the gas constant and T the temperature. 

Finally, the yield for semi-brittle fracture is defined as: 

&ε II

σ II =
C
ε II       (11) 

We plot yield stresses as a function of depth (Supplementary Fig. DR1) for a friction coefficient 

of 0.6 and a dislocation creep law for plagioclase for a constant strain rate of  = 10-14 s-1, a 

linear geotherm of 13.3 °C/km (400 °C at 30 km depth) and C = 4.106 J, a value that corresponds 

to a yield at a stress of 400 MPa for a strain of 1%. The defined rheology develops quasi-static 

fractures or veins at or near the brittle ductile transition that coalesce into ductile shear zones. In 

the brittle part of the crust these zones form as shear fractures following the Mohr-Coulomb 

orientation for localization. In the ductile crust the fractures form in the direction of the 

minimum principal stress. Both types of fractures are then deforming in a ductile manner after a 

time, tM corresponding to the initial elastic response of a Maxwell body.  

&ε II

 

Models 

We use the code PARAVOZ developed by Yuri Podlatchikov and Alexei Poliakov (Poliakov et 

al., 1993). This version is extended to account for energy conservation and particle phase and 



properties tracking to reduce phase boundary diffusion in between re-meshings after large 

amounts of deformation (Lavier and Buck, 2002; Lavier and Manatschal, 2006). Supplementary 

figures DR3 to DR5 show a more detailed evolution of the model presented in figure DR3 of the 

main paper.  In addition to the phase field, the square root of the second invariant of the strain 

rate and the viscosity in the model are shown (Supplementary Fig. DR3 to DR5).  Each field is 

overlaid by a contour-plot of the boundaries between the phases.  The strain rate shows the 

evolution of the active fault during the formation of the rift and the wedge. The viscosity shows 

areas of elasto-plastic behavior (from red to green 1023 Pa.s) and visco-elastic behavior (from 

green to blue 1020 Pa.s). The bottom plot is the density in the whole models with the 

corresponding topography on top.  Following the models of subduction previously developed 

with the same numerical technique (Gurnis et al., 2004), subduction is initiated and maintained 

by the presence of a very weak slab interface with a coefficient of friction less the 0.02. 
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SUPPLEMENTARY FIGURES 

 
Figure DR1. We plot the square root of the second invariant of the yield stress for Mohr-

Coulomb, dislocation creep and semi-brittle fracture. We show that the Yield stress of the crust 

is not only dependent on the normal stress, temperature and strain rate but also on the second 

invariant of the strain at yield (elasto-plastic and visco-elastic) that is equivalent to a measure of 

damage in the rocks. The resulting deformation in the lithosphere is therefore dependent on the 

amount of damage accumulated in the middle to lower crust. This process must be facilitated by 

hydro-fracturing in the presence of aqueous fluid in the crust and lithosphere. 

 



 
Figure DR2. The numerical code is an extended version of the model PARAVOZ (Yuri 

Podlatchikov, Alexei Poliakov) (Cundall, 1989; Poliakov et al., 1993; Lavier and Buck, 2002; 

Lavier and Manatschal, 2006; Jammes et al, 2010) that contains Eulerian-Lagrangian particles to 

track phase boundaries of the material transported during the brittle and ductile processes 

simulated in the model.  The model box size is 300 km deep and 1200 km wide.  The grid size is 

2x4 km in the low resolution parts of the models and set at 2x2 km in the area where collision 

occurs. The initial geometry of the model is that of a low-resolution passive margin (to the left) 

and an oceanic plate (to the right).  The continent (equivalent to Eurasia) is 400 km wide with a 

30 km thick crust thinning to 12 km over 50 km.  The transition from continent to ocean is 

defined as a zone of thin transitional crust (200 km x 8 km thick). A 400 m thick layer of 



sediments is covering the oceanic crust and a 4 km thick layer of sediments covers the margin.  

A zone of pre-deformed and pre-weakened oceanic crust and mantle is set to the left of the arc to 

initiate subduction there.  The thermal age is initially set by calculating a continental geotherm 

over the thickness of the lithosphere corresponding to a given age after the end of the last 

tectonic event (Lavier and Steckler, 1997).  Eclogite transformation of the oceanic crust occurs 

when oceanic crust reaches the depth of 50 km.  The density at 273°C of the oceanic crust is 

increased by 350 Kg.m-3. Serpentinization of the mantle occurs when the subducting oceanic 

crust is in contact with the mantle at a depth lower than 50 km, The density at 273°C is then 

decreased by 300 Kg.m-3. An algorithm then transforms 2 to 3 elements above the subducting 

oceanic crust to serpentinized mantle with a weak olivine rheology (we decrease the activation 

energy of dry olivine by one order of magnitude) and a lower density (Table DR1). The collision 

is imposed kinematically by allowing flux of oceanic lithosphere at 5 cm yr-1 on the right side of 

the box. The flux at the bottom boundary is controlled by a Winkler foundation that simulates 

isostatic equilibrium. Table DR1 gathers the physical properties used to model the lithosphere.  

To localize deformation in the crust the friction coefficient is decrease from 0.6 to 0.1 and the 

cohesion from 44 to 4 MPa.  The creep viscosities of the continental, oceanic crust and the 

lithospheric mantle are controlled by dislocation creep laws (equation 10).  

 

 

 

 

 

 



Table DR1:  
Parameter Symbol Value 

Rheological parameters 
Friction coefficient μ 0.6-0.3 
Cohesion  44MPa-4MPa 

  Crust: 
Quartz1 Crust:Plagioclase2 Gabbroic lower 

crust1 
Mantle: Dry 

olivine1  
Power-law 
exponent A 5 102 MPa-

n.s-1 3.3 10-4 MPa-n.s-1 1.25 10-1 MPa-

n.s-1 
7 104 MPa-

n.s-1 
Activation 
energy Q 2 105 J.mol-1 2.38 105 J.mol-1 3.5 105 J.mol-1 5.2 105 

J.mol-1 
Initial constant n 3 3.2 3.05 3 
Universal gas 
constant R 8.3144 J.mol-1.°C-1 

Thermal parameters 
Crustal conductivity 2 W-1K-1 
Mantle conductivity 3.3 W-1K-1

Heat production crust 10-9W.Kg-1

Moho temperature 500°C 
Asthenosphere temperature 1330°C 
Thermal expansion coefficient 3.10-5K-1

Surface temperature 10°C 
Densities 

Crustal density at 273°C 2800 kg.m3 
Mantle lithosphere density at 273°C 3300 kg.m3 
1(Kirby and Kronenberg, 1987) 
2(Ranalli, 1995) 
 



 
Figure DR3: Evolution of the subduction to collision after 6 million years. 



 
Figure DR4: Evolution of the subduction to collision after 8 million years. 



 
Figure DR5: Evolution of the subduction to collision after 10 million years 
 
 
 
 
 
 
 
 



 
 
Fig. DR6: Blow-up of seismic image and interpretation in fig. 2 in text.  
 
 
 



 
 
 
 
 
 
 
 
 




