
1 
 

GSA DATA REPOSITORY 2012206    Parnell et al. 

 

Granite types related to magma-crust interaction 

 

 

Figure DR1. Possible fractionation pathways for anorogenic granite derived from an initial alkali 
basalt magma. Peralkaline refers to granites with molar (Na+K)/Al > 1; metaluminous to Al/(Na 

+ K + Ca)  1; peraluminous to Al/(Na + K + Ca) > 1.  Permitted refers to the situation when a 
granite can traverse the crust without significant interaction with the crust (sensu Pitcher, 1979). 
‘Attenuated’ refers to granite emplaced into attenuated lithosphere (e.g. Skaergaard, Mull);  
normal thickness to granite that must traverse lithosphere that is not attenuated and is thus likely 
to undergo significant interaction with crustal rocks (including S-type sensu Chappel & White, 
1974, 2001).  The fractionating phases on the left of the diagram are those largely responsible for 
the generation of peralkaline derivatives (LeMasurier et al., 2004).  Fractionation of kaersutite is 
known to result in Si-saturation in the anorogenic volcanic rocks and associated intrusions of 
Marie Byrd Land, Antarctica (LeMasurier et al., 2004).  The first derivative of the alkali basalt is 
likely to be of the alkali hawaiite-mugearite-benmorite series, and here it is assumed that 
benmorite will pond at the base of the lower crust. Interaction of a Si-undersaturated benmorite 
with lower crust will result in more Si-saturated derivatives, as will kaersutite fractionation. 
Increasing interaction with the upper crust from left to right in the diagram will result in 
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progressively more aluminous magma (shown by black triangles). At the crystallization depth of 
the granite, magmatic fluids associated with the peralkaline granite will have a high HF/H2O 
ratio often resulting in the crystallization of primary fluorite. With increasing input of crustal 
material the fluids will have progressively lower HF/H2O ratios. 

 

Figure DR2. Average element abundances for 1) peralkaline melts (LeMasurier et al., 2004), 2) 
metaluminous granite in attenuated lithosphere (e.g. Palaeocene of Mull; Pearce et al., 1984) 3) 
peraluminous granite (Chile; Pearce et al., 1984).  Isotopic data confirms that the crustal input 
into these magmas increases in the order 1, 2 and 3, i.e. the abundances of elements, including 
many metals, is substantially higher in peralkaline melts, without crustal input. The position of 
Mo, Pb and U is taken from Sun and McDonough (1989), such that they have similar 
compatibility to Th, Ta and Pb respectively. The behaviour of the transition elements such as Zn 
and Cu during fractional crystallization is poorly understood, and they are more likely to be 
modified during fluid circulation at high levels. Normalizing values from Sun and McDonough 
(1989).   
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Source literature for Mesoproterozoic copper sulphides 

Data sources 

1. Torridon Group 
Age:  1.0 Ga (Stewart 2002) 
Copper sulfides: chalcopyrite-pyrite intermixtures (authors’ unpublished data) 
δ34S values: -35 to -39 per mil (authors’ unpublished data) 
Interpretation of microbial sulfate reduction: Parnell et al. 2010 
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Precompactional/early diagenetic origin: authors’ unpublished data 
Lacustrine environment: Stewart 2002 

2. Midcontinent Rift 
Age: 1.1 Ga (Mauk et al. 1992) 
Copper sulfides: chalcocite (Burnie et al. 1972) 
δ34S values: -15.8 to +29.2 per mil (Burnie et al. 1972) 
Interpretation of microbial sulfate reduction: Burnie et al. 1972 
Precompactional/early diagenetic origin: Mauk et al. 1992 
Lacustrine or restricted marine environment: Elmore et al. 1989 

3. Stoer Group 
Age: 1.18 Ga (Parnell et al. 2010) 
Copper sulfides: chalcocite (Parnell et al. 2010) 
δ34S values: -35.5 to -18.4 per mil (Parnell et al. 2010) 
Interpretation of microbial sulfate reduction: Parnell et al. 2010 
Precompactional/early diagenetic origin: Parnell et al. (2010) 
Lacustrine environment: Stewart 2002 

4. Lower Belt Supergroup 
Age: 1.46 Ga (Sears et al. 1998) 
Copper sulfides: unspecified (Strauss and Schieber 1990) 
δ34S values: -17 to +12 per mil (Strauss and Schieber 1990) 
Interpretation of microbial sulfate reduction: Lange and Sherry 1983, Strauss and 
Schieber 1990 
Precompactional/early diagenetic origin: Lange and Sherry 1983, Hayes and Einaudi 
1986 
Lacustrine or restricted marine environment: Winston 1990 
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Source literature for ages of high grade metalliferous ore deposits 

High grade ores of zinc: Sawkins (1989) 

Richest zinc ores: Taylor et al. (2009). 

High grade ores of copper: Skirrow and Ashley (2000). 

Supergiant copper deposit, Olympic Dam: Groves et al. (2010). 

Molybdenite-bearing anorogenic granites: Dall’Agnol et al. (1999); Damman (1989); Kirs et al. 
(2004); Lehmann (1987). Molybdenite-bearing Mesoproterozoic pegmatite: von Knorring and 
Dearnley (1960). 

Highest grade molybdenum deposit, Merlin: Jones et al. (2010). 
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