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Quarrying rate from adhesive wear theory: Equation 2 of the article 
 

Erosion of solid surfaces in sliding contact is referred to as “wear” in materials 

science. Owing to asperities (bumps) on solid surfaces, the real area of contact along the 

sliding interface is less than the total area. The theory of adhesive wear uses the 

frequency of asperity-junction formation during slip and posits a probability k of asperity 

breakage at a junction to determine the volume of wear fragments Qv: 

                                                               ev VNkxQ = ,                    (S1)  

where x is the slip displacement, N is the number of asperity junctions formed per unit 

distance of slip, and Ve is the volume of material eroded if an asperity breaks, which 

depends on the load normal to the slip surface, the hardness of the material, and the 

asperity geometry (Rabinowicz, 1965).  In materials science applications involving 

microscopic asperities, k is a wear constant. If a specific asperity geometry and spacing 

are assumed, the value of k can be determined through experiments in which solids are 

slid past each other and surface erosion is measured (for example, k for metals is typically 

0.5-160 ×10-3) (Rabinowicz, 1965).   

For the two-dimensional stepped glacier bed of the model (Fig. 1), with steps of tread 

length L, the total number of steps is ns = LT/L, where LT is the total length of the bed. For 

each unit distance of displacement, ice will traverse a step 1/L times, so that N = ns/L, or 
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The volume of rock eroded when a rock step fails will vary widely. Owing to ice-bed 

separation during sliding, cavities extend a distance S over L, so the length of the zone of ice-

bed contact is L − S (Fig. 1). Predominately vertical crack growth is most likely in rock 

where deviatoric stresses are maximized in the bed: immediately adjacent to step risers 

(Iverson, 1991) and at the down-glacier ends of cavities where ice reconnects with the bed 

(Hallet, 1996). Crack growth parallel to treads is commonly controlled by preferentially weak 

bedding surfaces. Thus, a reasonable approximation for rock with randomly distributed zones 

of weakness is that the average volume per unit width of rock eroded per step is 

                                                              )SL(hVe −=
2
1 .                                                (S3) 

Substituting Equations S2 and S3 into S1 and dividing both sides of the resultant 

equation by A, yields the thickness, T, of rock eroded: 
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The time derivative of T is the rock thickness eroded by quarrying per unit time, qE& , as 

shown in Equation 2 of the article: 
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Weibull theory of rock fracture: Equation 4 of the article 

Consider a brittle solid under a deviatoric stress, σd.  The solid contains a large 

number of cracks. The guiding assumption of the Weibull theory of fracture is that the 

strength of the solid is controlled by the strength of its weakest element—presumably the 
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element with the largest and most favorably oriented crack. Then if P1(σd) is the 

probability that the strength of one element is less than σd, the failure probability, k, of 

the solid can be shown to be 
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where V is the volume of the solid and V0 is a characteristic volume (Weibull, 1951; 

Jaeger and Cook, 1979; Bažant et al., 1991).  For a fractured rock mass, V0 is chosen to 

be sufficiently large to include the mass’s largest cracks (Wong et al., 2006).  The 

function P1(σd) was suggested by Weibull (1951) on the basis of experimental data: 
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where σu is the smallest strength of any element, usually taken to be zero, σ0 is the stress 

at which 63% of the elements fail, called the scale parameter, and m is the Weibull 

modulus that decreases with increasing strength heterogeneity of the solid. Thus, from 

(S4) and (S5), 
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This expression for failure probability is commonly used to assess rock failure 

(McDowell and Bolton, 1998), although some authors express σ0
-m, or V0

-1 σ0
-m as a 

constant (Jaeger and Cook, 1979; Lu and Xie, 1995) and those focusing on rock 

specimens of a single size commonly omit the volume dependence (e.g., Fang and 

Harrison, 2002). As described in the article, Equation 4 of the article follows from 

Equation S6.  
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Figure S1A illustrates how the failure probability k depends on σd—normalized to σ0 

and with V/V0 = 1—for values of m commonly applied to rocks (Fang and Harrison, 

2002; Tang et al., 2000; Xu et al., 2004), as well as for m = ∞, which corresponds to an 

idealized rock mass of uniform strength. Values of m are obtained by fitting data to 

results of laboratory strength tests on many tens of specimens of a given rock type. 

Multiple rock specimens are subjected to testing at each of many values of σd, allowing 

the probability of failure to be determined at each stress level. Figure S1B shows data 

from 83 tests on biotite gneiss specimens (Lobo-Guerrero and Vallejo, 2006) and the 

regression that allows values of m and σ0 to be determined. 

An assumption inherent in using Equation S6 to evaluate the probability of rock-step 

failure is that it can be applied at scales over which it has not been tested experimentally. 

Ideally, multiple rock specimens of volume V0, sufficiently large to contain the largest 

cracks in a rock mass, could be tested to determine m and σ0.  Such testing is not possible 

at scales relevant to the rock bed of Figure 1. However, if crack sizes in rocks are 

generally fractally distributed, as suggested by some measurements (e.g., Turcotte, 1997), 

then m is independent of scale because the fractal dimension of crack-size distributions 

implies a specific value of m (Wong et al., 2006; Lu and Xie, 1995).   

A second caveat regarding Equation S6 is that it applies most strictly to a rock mass 

subjected to uniform, uniaxial tension (e.g., Jaeger and Cook, 1979).  Although this 

equation can be generalized for non-uniform, triaxial stress states (Bažant et al., 1991) 

and the state of stress in subglacial rock steps includes such complexity (Iverson, 1991; 

Hildes et al., 2004), Equation S6 is used here because only a rough estimate of deviatoric 

stresses in the bed is available (Equation 5).  
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Treatment of more general distributions of step size 

Size distributions of bumps or steps on glacier beds have not been systematically and 

comprehensively characterized, so without clear empirical direction, random, Gaussian, 

and fractal distributions are considered to explore the generality of the model results.  For 

random size distributions, limiting values of step height h are chosen (0-2 m, Fig. 3, 4), 

with step tread length L = 10h. For the Gaussian size distribution, the mean value of h is 

1 m, with a standard deviation of 0.25 m, such that values of h span ~0-2 m, and L = 10h 

(Fig. 3). For the fractal distribution, the number of steps is proportional to h-2, with fractal 

limits of 0.1 m and 2 m, and L = 10h (Fig. 3).  Note that steps larger than those 

considered herein obviously occur, but considering steps up to 5 m in height did not 

significantly change the results. Note also that step heights in the model must be a small 

fraction of the glacier thickness of a landscape evolution model for Equation 3 of the 

article to be valid. In all cases, ~ 5000 steps are considered and randomly positioned with 

respect to their size. Equations (2-5) are applied to each step i to calculate its erosion rate 

by quarrying
iqE& . The rate of erosion is ∑=

i qi
T

i
q E

L
L

E && . Some steps are drowned by 

cavities. There is zero erosion of step i if ∑≥
=

+−−

p

1j
1jipi LS  where p is the number steps up-

glacier from step i where ice loses contact with the bed, and Si-p is computed (Equation 

(3)) using a step height of ∑
=

−

p

1j
jih .   

Parameter choices 

All parameters can be measured or estimated outside the model context, although some 

can be estimated only roughly (Table 1). The constants in the flow rule of ice are reasonably 
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well-known: n = 3, which is a good assumption for ice subject to large deviatoric stresses 

near cavities, and B = 73.3 MPa s1/3, which is a mean value based on various studies of the 

creep of ice at its pressure-melting temperature (Cuffey and Paterson, 2010). The largest 

stress that ice pressing on a ledge can support without brittle failure, σn
*, is considered to be 

10 MPa on the basis of arguments made by Hallet (1996). Effective pressure Pe = 0.5 MPa, 

unless specified otherwise; values both well above and below this value are measured 

commonly beneath modern bedrock-floored glaciers (Cuffey and Paterson, 2010). The 

parameters m, σ0, and V0 are material properties of the rock bed. The range of m considered 

(m = 1.5–5.0) spans approximately the lower half of the range of values determined in most 

laboratory and modeling studies of rock: m = 1-10 (Vardar and Finnie, 1975; Tang et al., 

2000; Fang and Harrison, 2002; Lobo-Guerrero & Vallejo, 2006).  Only the lower half of this 

range is considered because engineered and seemingly more homogenous materials than 

most rocks, such as brick, pottery, cement, and ceramics, share the upper half of this range 

(McDowell et al., 1996). The value of σ0  is taken to be 10 MPa, which is within the lower 

half of a range of tensile strengths reported for rocks (Jaeger and Cook, 1979) and close to 

some measured values (Lobo-Guerrero & Vallejo, 2006) (see also Fig. S1B). V0  = 10 m2, 

thereby acknowledging that cracks may be of the same scale as the steps of the simplest bed 

geometry considered (h = 1 m, L = 10 m). To roughly account for stresses required for 

subcritical crack growth, κ  = 1/3, equal to the ratio of stress-corrosion limit to fracture 

toughness used in Hallet’s (1996) quarrying model. 

Specifying c (Equation 5) with confidence is particularly difficult due to non-uniform 

normal stresses over zones of ice-rock contact and resultant non-uniformity of deviatoric 

stresses in steps (Iverson, 1991).  This problem is compounded by the likely departure from 
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isotropic elasticity in rock steps with large pre-glacial cracks. Nevertheless, results of contact 

problems, in which a uniform or non-uniform normal stress is applied over a finite footprint 

to the surface of a semi-infinite elastic half-space (Lawn and Wilshaw, 1975) or quarter 

space (Hetényi, 1960) provide some guidance.  They indicate that over most of the zone of 

contact, c will be a small fraction of the normal stress on the contact, except very locally—

for example, immediately adjacent to its up-glacier edge where bed-parallel tensile stresses at 

the bed surface indicate c = 0.68 for the case of uniform loading (Hetényi, 1960; Hallet, 

1996).  Here I use a smaller value more consistent with generally compressive principal 

stresses beneath the zone of contact (Iverson, 1991; Hildes, 2001): c = 0.1.  
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