

Figure DR1. Sample F-1, 6 and 7 – calcite precipitates and sampling locations. Sample F-1E (**a**), F-1B and inset of F-1G (**b**); Sample F-6A (**c**) and F-6B (**d**); Sample F-7B (**e**), F-7C (**f**), F-7D (**g**) and F-7E (**h**). Locations of the various types of calcite are shown with doted lines and labelled: calcite coating - Y, calcite gouge - X, calcite cement - T, calcite striation - S. Host-rock sample are also shown in b, c, and h (labelled HR). Obtained U-Th ages in ka are also shown ($\pm 2\sigma < 5.5$, see data repository item #2).

Figure DR2. Sample F10 and F23 – calcite precipitates and sampling locations. Sample F10-C (a), F10-D (b), and F-10A (c); Sample F23-A (d), F23-J (e), and F23-G (f); labelled: calcite coating-Y, calcite gouge-X, calcite cement-T, and calcite striation-S. Host-rock sample is also shown in a (labelled HR).Note the right angle between fault plane and calcite vein. Obtained U-Th ages in ka are also shown ($\pm 2\sigma < 1.7$, see data repository item #2).

Figure DR3. Sample F25 – calcite precipitates and sampling locations. Sample F25-A (a) and F25-B (b). Note the high percentage of recrystallised calcite (glassy to white colours) in these samples; Sample F25-E (c), F25-F (d). Locations of the various types of calcite are shown with doted lines and labelled: calcite gouge-X, calcite cement-T, and calcite striation-S. Host-rock sample is also shown in g (labelled HR). Obtained U-Th ages in ka are also shown ($\pm 2\sigma < 1.9$, see data repository item #2).

Table DR1.

Sampling ¹					Stable isotopes ²			Sr isotop					U	Th geo	cochronology ⁴					REY composition (ppb) ⁵													
Comple	Fault	Enca	True #	Description	Separa-	δ ¹³ C‰	δ ¹⁸ O‰	1/Sr	87 a	12-	Sample	U	²³² Th	(²³⁰ Th/	$(^{230}\text{Th}/^2$	-2-	(²³⁴ U/	.2-	²³⁰ Th Age		Initial	12-	La	Ca	Du	NJ	Sm Eu	Ca	D X		En	Tm	Vh I.
Sample	rault	r rag.	Type #	Description	tion	V-PDB	V-SMOW	(ppm)	Sr/Sr/Sr	±2σ	(mg)	(ppm)	(ppb)	²³² Th)	³⁸ U)	±20	²³⁸ U)	±20	(ka)	±20	²³⁴ U/ ²³⁸ U	±20	La	Ce	РГ	ING	Sm Eu	Ga		по	Er	Im	ro Lu
F1-GHR	F1	G	HR	host rock	powder	-4.0	21.5	0.013	0.707781	0.000024													1579	630	185	764	147 39	210	240 30	13 59	176	26	153 24
F1-BT1	F1	В	T 1	breccia cement	chips	-4.9	18.9	0.007	0.707561	0.000010	29.00	0.221	19.27	25	0.7090	0.0036	1.1617	0.0021	97.7	1.2	1.2183	0.0037	1523	505	126	488	89 25	141	175 250	00 49	167	29	196 32
F1-ET1	F1	Е	T 1	breccia cement	chips	-4.4	18.8	0.005	0.707521	0.000010	50.42	0.166	7.842	54	0.8339	0.0027	1.2668	0.0016	110.18	0.75	1.3691	0.0029	402	142	44	180	33 9.6	54	56 88	1 16	51	7.8	47 7.8
F1-BX1	F1	B	X 1	reddish gouge layer	chips	-9.3	25.0	0.053															3727	2902	682	2485	580 148	712	615 55	75 135	364	48	255 37
FI-EXI E1 EV1	FI F1	E	X I V 1	reddish gouge in vein structure	chips	-8.8	23.9	0.042	0 709207	0.000007	192.25	0.127	12.01	22	0.0140	0.0021	1 2092	0.0012	106 50	0.02	1 5515	0.0050	5747	4635	1060	4329	944 234	1148	966 868	89 214	575	72	<u>390 56</u>
FI-EII F1 EV2	F1 F1	E	\mathbf{I} \mathbf{I} \mathbf{V} 2	coating layer top part	chips	-9.9	25.5	0.074	0.708297	0.000007	185.25	0.137	12.01	32 7	0.9149	0.0021	1.3983	0.0013	1/8 78	0.82	1.3313	0.0059	33	252	8.0 60	226	8.3 2.4 52 13	65	50 58	6 2.5 3 14	8.0	5.3	$\frac{8.1}{28}$ 1.4
F1-GY1	• F1	G	Y 1	coating layer top	nowder	-10.1	25.3	0.070	0.700345	0.000009	100.55	0.200	100.0	,	0.0520	0.0018	1.0701	0.0009	140.70	4.0	1.1175	0.0008	124	80	21	89	18 4 9	24	23 27	4 55	18	2.5	$\frac{26}{16}$ $\frac{4.5}{26}$
F1-GY2	F1	G	Y 2	coating layer bottem	powder	-10.2	23.3	0.063			70.35	0.137	9.36	35	0.7821	0.0025	1.4623	0.0020	78.27	0.61	1.5877	0.0055	110	71	18	80	17 4.4	21	21 25	8 5.4	16	2.4	$\frac{10}{15}$ 2.5
F6-AHR	F6	A	HR	host rock	powder	-4.5	21.4	0.008															2225	763	262	1092	204 55	287	288 360	01 73	227	35	215 33
F6-AS1	F6	А	S 1	striation top	chips	-5.1	19.2	0.005	0.707529	0.000008	68.12	0.634	16.62	100	0.8653	0.0019	1.0596	0.0012	178.8	1.2	1.0995	0.0018	917	300	95	392	75 20	116	136 202	22 38	134	22	148 24
F6-AS2	F6	А	S 2	striation top (along fault)	chips	-4.4	18.5	0.004	0.707635	0.000008	33.15	0.328	11.57	68	0.7854	0.0029	1.0747	0.0015	138.8	1.2	1.1117	0.0022	894	274	86	338	62 18	104	124 199	94 36	126	20	134 22
F6-BS1	F6	В	S 1	striation dilation site	chips	-5.0	19.9	0.007	0.707510	0.000010	152.57	0.826	23.59	87	0.8141	0.0010	0.9871	0.0011	190.9	1.1	0.9776	0.0019	2266	783	272	1151	215 56	321	325 422	21 85	266	40	240 39
F6-AT1	F6	А	T 1	cement, no age analyses	powder	-4.9	19.5	0.005															387	127	40	162	28 8.2	48	55 89	5 15	54	8.4	52 8.6
F6-BY1	F6	B	Y 1	vein coating layer bottem	chips	-9.8	25.2	0.076	0.708129	0.000011	86.13	0.275	7.110	102	0.8651	0.0017	1.1596	0.0010	141.57	0.66	1.2398	0.0016	138	69	20	85	15 4.5	22	22 25	1 5.4	16	2.4	13 2.3
F6-BY2	F6	B	Y 2	vein coating layer middle	powder	-9.8	25.2	0.074			86.76	0.209	1.756	323	0.8954	0.0022	1.2385	0.0010	131.41	0.65	1.3466	0.0014	42	22	5.7	28	5.1 1.4	6.6	7.4 10	9 2.0	6.4	0.9	<u>6.1</u> 1.0
F6-BY3	F6 E7	Б	Y 3	vein coating layer top	powder	-9.7	25.1	0.072			72.62	0.206	2.835	191	0.868/	0.0020	1.2435	0.0013	123.29	0.58	1.3463	0.0017	76	32 822	9.0	37	7.4 2.2	221	12 18	6 3.5	255	1.8	11 1.7
F7-EHK	F7	B	T 1	breccia cement	chins	-3.1	19.6	0.013	0 707/93	0.000008	142.40	3.02	9.630	815	0.8575	0.0013	1.008/	0.0007	206.1	1.0	1.0151	0.0012	1847	667	2//	881	100 53	282	282 34	$\frac{52}{24}$ $\frac{64}{70}$	208	30	176 28
F7-DT1	F7	D	T 1	breccia cement	chips	-4.6	18.8	0.005	0.707549	0.000007	38.33	1.66	61.04	70	0.8434	0.0013	0.9765	0.0007	220.1	1.5	0.9558	0.0012	1186	382	148	511	127 33	182	177 220	$\frac{24}{10}$	129	18	101 16
F7-ET1	F7	E	T 1	breccia cement	chips	-4.5	19.3	0.004	0.707511	0.000008	46.15	2.17	2.357	2400	0.8598	0.0013	1.0185	0.0007	200.45	0.98	1.0326	0.0012	742	231	73	256	55 16	79	92 130	50 25	81	13	76 12
F7-CY1	F 7	С	Y 1	fault coating layer	powder	-9.9	24.8	0.048	0.708312	0.000008	42.52	0.1.00	()(()	0.9642	0.0020	1 2 (4 2	0.0021	102.40	0.67	1 4010	0.0025	132	69	19	82	16 4.3	21	23 27	4 5.8	18	2.8	17 2.6
F7-CY2	• F7	С	Y 2	fault coating layer	powder	-10.3	24.0	0.060			43.55	0.169	0.90	64	0.8642	0.0028	1.3042	0.0021	102.40	0.67	1.4919	0.0035	93	73	16	67	13 3.3	17	17 20	4.2	13	2.0	12 1.9
F7-CY3	F7	С	Y 3	fault coating layer	powder	-10.2	23.5	0.045			62.17	0.161	3.082	123	0.7787	0.0026	1.3921	0.0018	84.90	0.47	1.5011	0.0024	59	38	9.7	41	8.7 2.3	11	11 12	3 2.6	8.1	1.2	6.8 1.0
F7-DY1	F7	D	Y 1	fault coating layer	powder	-9.9	25.2	0.070	0.708327	0.000008	39.08	0.181	21.33	25	0.9881	0.0028	1.2962	0.0012	141.4	1.5	1.4562	0.0063	374	211	58	249	47 13	67	65 73	0 15	48	6.8	40 6.6
F10-CHR	F10	C	HR	host rock	powder	-4.7	20.2	0.009												0.00			1736	570	203	854	156 42	225	235 294	49 59	181	27	166 25
F10-AS1	F10 ● F10	A	S 1	striation dilation site	chips	-4.7	18.9	0.004	0.707518	0.000010	68.03	0.217	5.930	96	0.8611	0.0022	1.2083	0.0013	128.33	0.70	1.3016	0.0020	537	143	49	202	33 9.3	55	58 102	20 17	55	8.1	51 8.1
F10-AY1	F10	A	$\begin{array}{c c} Y & I \\ \hline Y & 2 \end{array}$	coating striation AS1	powder	-10.0	25.1	0.066	0.708313	0.000008	52.33	0.150	13.58	32	0.9421	0.0020	1.4233	0.0019	108.32	0.87	1.5894	0.0066	128	129	25	100	18 5.8	24	24 27	1 5.5	17	2.4	14 2.3
F10-A12	▲ F10 F10	A C	1 2 S 1	striation dilation site top	chine	-10.0	23.3	0.008	0 707525	0.000008	73.15	0.573	1 281	227	0 5585	0.0014	1.0570	0.0011	81.04	0.34	1.0730	0.0014	2482	824	23	1367	20 5.3	24	22 27	4 5.0	252	2.5	$\frac{14}{208}$ $\frac{2.7}{33}$
F10-CS2	F10	<u>с</u>	$\frac{5}{5}$ $\frac{1}{2}$	striation dilation site bottom	chips	-4.6	18.6	0.004	0.707527	0.000008	111 70	0.108	10.92	25	0.3365	0.0014	1.0079	0.0011	91.35	0.90	1.5202	0.0014	1299	419	118	460	77 21	122	135 19	50 37	124	19	120 19
F10-CT1	F10	C	T 1	breccia cement	chips	-4.9	20.1	0.007	0.707575	0.000010	34.91	0.503	18.42	70	0.8402	0.0016	1.0794	0.0013	158.20	0.91	1.1255	0.0019	1215	337	112	444	75 22	122	145 205	58 40	134	21	137 22
F10-CY1	F10	C	Y 1	coating layer with reddish gouge	chips	-9.7	25.0	0.051			93.59	0.419	77.81	14	0.8769	0.0015	1.1010	0.0009	161.3	1.9	1.1679	0.0042	1232	807	198	835	165 43	222	202 210	56 49	144	20	114 17
F10-CY2	F10	С	Y 2	coating layer	powder	-9.8	25.5	0.065			72.65	0.114	27.94	0	0 7522	0.0024	1 1697	0.0017	70.20	1.74	1 6126	0.0200	196	254	42	171	38 8.5	39	34 30	7 7.6	21	3.2	16 2.7
F10-CY3	• F10	С	Y 3	coating layer	powder	-9.8	25.5	0.070	0.707679	0.000010	72.03	0.114	27.04	9	0.7552	0.0024	1.4007	0.0017	70.29	1./4	1.0120	0.0200	218	207	38	161	35 8.4	39	35 37	4 8.2	24	3.4	21 3.2
F10-CY4	F10	С	Y 4	coating striation CS2	powder	-9.9	25.4	0.066	0.708368	0.000009													208	170	37	162	32 8.5	40	36 37	5 8.2	24	3.4	20 3.0
F10-DT1	F10	D	T 1	breccia cement	powder	-4.5	19.1	0.005															524	138	37	135	23 7.0	39	49 77	2 14	45	7.6	48 8.2
F23-GHR	F23	G	HR	host rock	powder	-5.4	21.4	0.018	0.707742	0.000008		1.0.6		201	0.0000	0.001-	0.0.00.0	0.0010			0.044.0	0.0001	3158	1446	411	1767	337 91	489	470 583	34 117	335	46	248 37
F23-AT1	F23	A	T I	cement in vein structure	chips	-5.8	21.7	0.017	0.707559	0.000010	46.20	4.06	36.14	284	0.8332	0.0017	0.9686	0.0010	220.3	1.76	0.9413	0.0021	1588	586	176	762	138 39	217	220 32	16 59	179	26	153 24
F23-ATT F23 AV2	F23	A	\mathbf{I} \mathbf{I} \mathbf{V} 2	vein coating top	chips	-10.5	25.7	0.034	0.708414	0.000010	04.03	0.545	3.530	348 485	0.9204	0.0018	1.1855	0.0008	155./5	0.70	1.2651	0.0012	11	12	2.0	8.9	2.1 0.5	2.0	2.0 2.	5 17	1.5	0.3	1.6 0.06
F23-AY3	F23	<u>А</u>	Y 3	fault coating top	chips	-10.0	25.5	0.055	0.708449	0.000010	165.23	0.398	14 55	75	0.9729	0.0009	1.2272	0.0003	151.00	0.41	1.3337	0.0011	613	564	105	437	87 23	112	100 10	16 23	65	93	+.3 0.34 52 7.7
F23-AY4	F23	A	Y 4	fault coating top	powder	-9.7	25.5	0.035	0.708408	0.000009	105.25	0.570	11.55	15	0.7075	0.0011	1.1771	0.0015	101100	0.75	1.2710	0.0025	196	269	38	163	32 8.6	39	38 40	1 8.8	25	3.8	$\frac{32}{20}$ 3.2
F23-AY5	F23	А	Y 5	fault coating bottem	powder	-9.7	25.5	0.029															84	102	16	67	15 4.1	19	19 20	6 4.2	13	1.9	9.7 1.5
F23-GX1	F23	G	X 1	reddish gouge with striations	chips	-7.1	23.1	0.033	0.707732	0.000010	97.48	0.469	50.95	23	0.8331	0.0013	1.0520	0.0009	164.3	1.4	1.0852	0.0018	2788	952	334	1380	243 65	333	327 354	48 77	233	34	205 31
F23-JY1	F23	J	Y 1	fault coating	chips	-8.5	25.2	0.033	0.708221	0.000008	173.27	0.249	2.452	303	0.9825	0.0017	1.3241	0.0009	135.72	0.49	1.4769	0.0013	77	24	8.6	37	6.5 1.6	8.4	8.1 99	9 2.0	5.9	1.0	5.9 1.1
F25-AHR	F25	Α	HR	host rock	powder	-6.3	20.0	0.007															1372	533	149	618	109 29	154	160 208	80 41	133	20	124 19
F25-AS1	F25	А	S 1	striation top part	chips	-4.7	18.7	0.005	0.707513	0.000008	82.58	0.138	10.55	33	0.8181	0.0025	1.2757	0.0017	104.74	0.84	1.3785	0.0042	920	365	96	374	68 19	96	104 139	92 28	88	13	79 13
F25-AS2	F25	A	S 2	striation middle part	chips	-8.6	21.1	0.027	0.707518	0.000008	162.73	0.418	21.14	49	0.8161	0.0015	1.0508	0.0008	158.75	0.94	1.0806	0.0013	422	198	49	186	37 9.8	46	47 59	1 12	38	6.0	37 5.8
F25-AS3	F25	A	S 3	striation middle part	chips	-7.3	21.1	0.006	0.707534	0.000008	197.05	0.290	16.34	41	0.7673	0.0013	1.0301	0.0007	145.84	0.94	1.0462	0.0011	916	379	101	372	73 20	103	114 14	53 29	87	13	84 14
F25-AS4	F25	A P	S 4	striction top part	powder	-8.9	25.3	0.050	0.707516	0.000020	50.27	0.207	14.03	55 27	0.8154	0.0039	1.1537	0.0018	120.7	1.4	1.2242	0.0032	602 575	278	/5	313	55 16 44 12	64	71 10	8 19	60	8.7	54 0.1
F25-BS1	F23	D R	$\frac{3}{5}$ $\frac{1}{2}$	striation middle part	chips	-3.1	21.0	0.004	0.707528	0.000008	1/1.55	0.105	9.094	21	0.0275	0.0032	1.5703	0.0017	127 71	0.89	1.4952	0.0000	373 472	207	44	255	44 12 31 9 4	04 15	52 69	29 19	16	9.1 7.6	<u>54</u> 9.1 52 0.0
F25-BS3	F25	B	S 3	striation bottem part	chips	-8.5	20.9	0.025	0.707537	0.000008	45.14	0.327	10.92	71	0.7870	0.0020	1.0632	0.0010	143.0	1.2	1.0955	0.0021	318	132	31	126	22 6.0	34	37 56	6 10	35	5.5	37 63
F25-ES1	F25	E	<u>s</u> 1	striation away from fault surface	chips	-7.3	20.6	0.031	0.707553	0.000008	85.94	0.060	2.113	70	0.8071	0.0038	1.7985	0.0031	61.36	0.45	1.9588	0.0054	164	67	14	53	9.5 2.7	13	17 27	5 4.9	17	3.1	21 3.6
F25-FS1	F25	F	S 1	striation away from fault surface	chips	-7.8	20.7	0.035	0.707538	0.000008	123.93	0.054	2.041	69	0.8559	0.0044	1.7952	0.0023	66.39	0.52	1.9693	0.0052	121	32	8.8	36	6.1 1.7	11	14 28	4 4.2	16	2.7	17 3.5
F25-GS1	F25	G	S 1	striation away from fault surface	chips	-6.4	20.6	0.012	0.707534	0.000008	69.68	0.155	3.151	124	0.8305	0.0025	1.2875	0.0018	106.82	0.62	1.3910	0.0025	266	146	28	111	21 5.7	29	37 52	1 9.7	33	5.4	35 6.0
F25-AX1	F25	А	X 1	reddish gouge	chips	-8.7	23.5	0.028															3029	2145	482	1770	400 101	480	442 423	85 102	284	39	219 34

Combined samples for U-Th age analyses

¹ Samples were cut to small hand-size fragments and polished using diamond disc, cleaned in ultrasonic bath with Milli-Q water, and dried completely prior to separation. Calcite coating layers were sampled using hand-drill tip (0.5 mm) parallel to calcite coating layer. Following the removal of the surrounding host-rock material, 1-5 mm size calcite chips were separated (using hand pliers) from small dilation structure, calcite gouge veins, and dilation breccia cement. Host-rock samples were also separated from striated fault plane and are used for comparison.

² The extraction of CO₂ was performed on a CO₂ extraction line for the host-rock samples (see Swart et al., 1991 for procedure) and using an on-line multi-prep, microanalysis system for all types of calcite precipitate samples. Measurements are calibrated using NBS-18, NBS-19, and BCS carbonate standards. The δ^{13} C and δ^{18} O are given in per mil ‰, compared to V-PDB and V-SMOW respectively, with analytical reproducibility better than ±0.1‰ (1\sigma error).

³ For the ⁸⁷Sr/⁸⁶Sr analysis, ~10-20 mg calcite powder for each sub-sample was dissolved by slowly adding 7N nitric acid drop by drop until full digestion. After full digestion, the sample solutions were dried on hotplate and redissolved in 0.2 ml 3.5N HNO₃ prior to chemical separation and purification using ion-exchange micro-columns made of a Sr-Spec resin. The Sr fractions were then loaded onto tantalum filaments with TaF₅ + 0.1M HPO₃ solution. Three loads of NBS-987 standard were run with every 17 samples. Long-term repeated measurement of the NBS-987 standard on this machine yields a mean ⁸⁷Sr/⁸⁶Sr value of 0.710249 ± 0.000028 (2 σ).

⁴ U-series dating was carried out by a Nu Plasma multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS). Powdered and chipped sub-samples were completely dissolved in concentrated HNO₃ with a mixed ²²⁹Th-²³³U spike. After digestion, U-rich and Th-rich fractions were separated using conventional anion-exchange column chemistry, and then treated with H_2O_2 for the complete removal of residual resin. The U and Th fractions were then mixed and diluted in 3 ml 2% HNO₃. The percentage of U needed for making the mixed solution depends on the amount of U in the sample and range from 100 to 10%. Generally, U concentration of ~10 ppb or less in the final 3-ml solution is targeted, which was calculated based on ICP-MS measurements of U and Th concentrations. The U-Th mixed solution was then injected into the MC-ICP-MS through a DSN-100 desolvation system with an uptake rate of around 0.12 ml per minute. U-Th isotopic ratio measurement was performed on the Nu Plasma MC-ICP-MS following the analytical protocol described by Hellstrom (2003), with minor modification to the detector configuration [e.g. the ²³⁵U on IC0 sequence was not used in our protocol, instead we used ²³³U for IC0/Faraday gain calibration; (Zhou et al., 2011)]. Working sensitivity is about 0.5-0.6 volt per ppb for U and 0.4-0.5 volt per ppb of Th. The time taken to measure each sample was undertaken and all isotopes were monitored and raw counts measured on their respective detectors to ensure no carry-over memories form previous samples. Allong-term monitoring of the carryover memories over 12 months shows that ²³⁰Th memory is consistently less than 0.1 counts per second, which is negligible for most samples. The memory is onsistently less than 0.1 arous per second, which is negligible for most samples. The memory is consistently less than 0.1 counts per second, which is negligible for most samples. The memory is consistently less than 0.1 counts per second, which is negligible for most samples. The memories for all o

⁵ Trace element measurements were performed on a Thermo X-series ICP-MS with conditions as described in Lawrence and Kamber (2006). For trace element analyses, 5–10 mg of carbonate powder was dissolved in 2% nitric acid (diluted to 5000 times) and pre-mixed with internal standards consisting of ⁶Li, ⁶¹Ni, ¹⁰³Rh, ¹¹⁵In, ¹⁸⁷Re, ²⁰⁹Bi and ²³⁵U (⁶Li, ⁶¹Ni and ²³⁵U are enriched isotopes) for internal correction of mass response drift following the protocol described in Eggins et al. (1997). Raw data were corrected for the low detectable blank, isobaric interferences from oxides and doubly charged species, and then externally corrected for additional drift by repeated measurements of a matrix-matched drift-monitoring solution after the measurement of every 5-7 unknown samples. The raw data were converted into concentrations in ppb using four independent digestions of the USGS reference material W-2 as the calibration standards. Values of W-2 are those reported in Lawrence and Kamber (2006). Experiment detection limit is better than 0.001 ppb within the REY range.

References:

Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmerom, Y., 2000, The half-lives of uranium-234 and thorium-230: Chemical Geology, v. 169, p. 17-33.

Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M., and Handler, M.R., 1997, A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation: Chemical Geology, v. 134, p. 311-326.

Hellstrom, J., 2003, Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS: Journal of Analytical Atomic Spectrometry, v. 18, p. 1346-1351.

Lawrence, M.G., and Kamber, B.S., 2006, The behaviour of the rare earth elements during estuarine mixing-revisited: Marine Chemistry, v. 100, p. 147-161.

Ludwig, K.R., 2008, Users Manual for Isoplot/Ex version 3.6: A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication No. 4.

Richards, D.A., and Dorale, J.A., 2003, Uranium-series chronology and environmental applications of speleothems, Mineralogical Society of America and Geochemical Society, Washington, DC, United States, 407-460 p.

Swart, P.K., Burns, S.J., and Leder, J.J., 1991, Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique: Chemical Geology, v. 86, p. 89-96. Zhou, H.Y., Zhao, J.X., Wang, Q., Feng, Y.X., and Tang, J., 2011, Speleothem-derived Asian summer monsoon variations in Central China during 54-46 ka: Journal of Quaternary Science, v. DOI: 10.1002/jqs.1506.