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Supplementary information 

 
Sampling Techniques 
 

Etang de la Gruère (EGR) in the Jura Mountains, Switzerland, is a raised 
ombrotrophic bog consisting in up to 650 cm of peat directly overlying lacustrine clay. Two 
cores representing the entire Holocene and extending into the Late Glacial were collected and 

analyzed for major and trace elements including REE, neodymium isotopes (expressed as Nd 
values) and pollen. Ages were obtained using 210Pb analysis and 14C for respectively the 
uppermost and deeper layers, and allow the construction of two robust age-depth models. The 
low-resolution cores (EGR 2P+2K) was sliced every 3 cm for the upper meter and every 10 
cm for the underlying 5.5 m. The subsamples were used to reconstruct the atmospheric Pb 
deposition since the Late Glacial, ca. 14,500 cal. yr B.P. (Shotyk et al., 2001). All subsamples 
were re-analysed for REE using Q-ICP-MS, and selected subsamples were measured for Nd 
isotopes using MC-ICP-MS. The high-resolution cores were cut every 1 cm (EGR 2G) and 2 
cm (EGR 2A), respectively and analyzed for Ti (Roos-Barraclough et al., 2002) and pollen 
(Roos-Barraclough et al., 2004). Based on the Ti concentrations, selected samples from these 
cores were measured for REE and Nd isotopes using Q-ICP-MS and MC-ICP-MS, 
respectively. One centimeter in the lowest decomposed part (catotelm) at EGR represents ~30 
years of peat accumulation, meaning that the high-resolution core (2A) has a 60-year 
resolution while the low-resolution core (2P) had only a 300-yr resolution. 

In this manuscript, diagrams are built on combined data of the low-resolution and high-
resolution cores. 

Analytical. Geochemistry 
 

Trace elements were measured in peat after preparation following Givelet et al.(2004). 
Peat powders for the entire cores were measured for major and some trace elements by home-
made XRF devices (Cheburkin and Shotyk, 2005, 1996) at IES, Heidelberg. They were also 
digested using a HNO3-HBF4 mixture in a high-pressure microwave (Krachler et al., 2002a,b) 
and measured using Q-ICP-MS at Strasbourg and Jülich (Krachler et al., 2003). Digested 
solutions were also used for Nd analyses after Nd purification using classical. REE and Nd 
extraction scheme (Pin and Zalduegui, 1997) and then were measured using a Nu plasma MC-
ICPMS at DSTE, Brussels. 
 
Age-depth Models for the Two Cores 

Radiocarbon preparation, measurements and age dating of the two cores are detailed in 
Shotyk et al (2001) and Roos-Barraclough et al (2004). We have established the best age-
depth model using a fifth polynomial relationship (Fig. DR1) for both records. Compared to 
linear interpolation (Fig. DR2), it avoids large shifts in modelled peat accumulation. However 
other models like the one obtained using Oxcal (Bronk Ramsey, C., 2001) give similar 



chronologies, especially for the events of interest (see Fig. 2 of the main text, and Table 
DR1). We use also the Bayesian approach to model the age-depth relationship of the 2 cores 
using "Bacon" (Blaauw and Christen, 2011). It also gives similar information (Figs. DR3-
DR4), even if the high resolution core allows to evidence some peaks (i.e. the Younger Dryas 
double peaks), and to better discriminate several events. Fig. DR5 shows also that there is no 
high difference between the dust deposition chronology as calculated by the 5th polynomial 
relationship and "Bacon". 
 
Validation of the Peat Core as Archive of Dust Deposition: Ti Concentrations in Both 
Cores 

The Ti records are similar in both cores (Fig. DR.5), confirming the reproducibility of 
the atmospheric record at EGR. As already noticed by Shotyk et al. (2001), Ti concentrations 
are enhanced around 12 cal. kyr B.P., i.e. around the Younger Dryas (YD). Between 10 and 8 
kyr ago, the high-resolution core (<50y/sample) records two events, related respectively to (1) 
the Vasset-Killian (VK) eruption in French Massif Central, (2) a larger dust flux around 8.4 
cal. kyr B.P., called Early-Middle Holocene Transition (EMHT). These two events were 
already suggested yet undistinguished by a unique peak recorded in the low-resolution core 
(Roos. The Nd isotope signature similar for this peak and for the VKT peak of the high-
resolution core means that the EMHT peak was not visible in the low-resolution core. A third 
event also occurred around 7.5 cal. kyr B.P., which is not visible in the low-resolution core. Ti 
concentrations increase in both cores after ~6 cal. kyr B.P. until ~3 cal. kyr B.P., when a 
stabilisation of the dust supply occurred.  

Pollen Diagram (Fig. DR6) 
 

The preparation of pollen samples included the use of HCl, KOH and HF, and 
acetolysis. Pollen samples are mounted in glycerine. All pollen analysis was carried out at the 
Geobotanical Institute, Bern. Data are available from the European Pollen Database 
(http://www.europeanpollendatabase.net). 
 
Calculation of Dust Deposition in Rate at EGR 
 
Dust deposition rate (g m-2 y-1) was calculated as follow: 
Dust Deposition Rate =  10 x [Ti]peat x Density /t x 1/[Ti]UCC /1000 
 
Where [Ti]peat is the Ti concentration (mg kg-1) in core EGR2A+2F, Density the bulk dry peat 
density (g cm-3) , t the time interval (years),  [Ti]UCC the Ti concentration (mg kg-1) in the 
Upper Continental Crust (Mc Lennan, 2001) taken here as representative of average dust 
deposited on the bog.   
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Table DR 1. Values of dust flux and age estimates of major dust peaks at Etang de la Gruère 
as given by 5th polynomial fit, Oxcal (P-sequence) and Bacon age-depth models. 
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Figure DR 1.  Age-depth models for the 2 cores EGR F+P and EGR A+G based on a 5 terms 
polynomial fit and IntCal04 terrestrial radiocarbon age calibration.. Black lines: age depth models; red 
circles: lower bound of the individual 95% confidence interval cal. ages given by OxCal. ; blue circles: 
upper bound of the individual 95% confidence interval cal. ages given by OxCal. 

 



 

Figure DR 2.  Oxcal v.4.1. age-depth model for EGR A+G. 

 
 
 



 
 

Figure DR 3. Age-depth model built with Bacon for EGR2E+2F (Blaauw and Christen, submitted). 
Darker colours indicate more likely calendar ages for the low-resolution core (depth in cm). 

 



 

Figure DR 4. Age-depth model built with Bacon for core 2A+2G (Blaauw and Christen, submitted). 
Darker colours indicate more likely ages for the high-resolution core (depth in cm). 
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Figure DR 5. Ti concentration profiles in the low-(top) and high- (bottom) resolution core. Green 
lines are only visual outlines. 

 

 



 
 

Figure DR6. Dust accumulation rate chronology in the high-resolution core based on the 5th 
polynomial model (yellow area) compared to the chronology built using Bacon for core 2A+2G 
(darker red colours indicate more likely ages). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure DR7. Relative pollen abundances in the high-resolution core. 

 


