METHODS

Conodonts for a taxonomic study were extracted using standard methods (Jiang et al, 2007). We analysed mono-generic samples of *Hindeodus* and *Clarkina* (P1 elements) in case of abundant faunas. Ramiform elements of both taxa were used in case of less abundant specimens. Only conodont elements without basal bodies were selected for further processing since the basal bodies have shown to be a potential source of contamination (Wenzel et al. 2000). Conodonts were dissolved in HNO₃ and the phosphate group was precipitated as trisilverphosphate following the method described in Joachimski et al. (2009). Oxygen isotope analyses were performed on Ag₃PO₄ using a TC-EA (high temperature reduction furnace) coupled online to a ThermoFisher Delta Plus mass spectrometer. 0.2 to 0.3 mg Ag₃PO₄ was weighed into silver foil and transferred to the sample carousel of the TC-EA. Samples and internal standards are generally measured in triplicate. All oxygen isotope values are reported in % relative to VSMOW (Vienna Standard Mean Ocean Water). Reproducibility of triplicate sample measurements is generally <±0.2‰ (1 std.dev.). The average oxygen isotopic composition of the internationally distributed standard material NBS 120c was 22.6±0.16‰ VSMOW.

REFERENCES CITED

- Jiang. H.S., Lai. X.L., Luo. G.M., Aldridge. R.J., Zhang. K.X., and Wignall. P.B., 2007, Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zheijang, China: Global and Planetary Change v. 55, p. 39-55.
- Jin. R.G., 1987, Radiolarites and the sedimentary environments of Late Permian Dalong Formation in the northern sector of the Longmen Mountains, Sichuan Province: Geological Review v. 33, p. 238-246 (in Chinese. with English summary).
- Joachimski. M.M., Breisig. S., Buggisch. W., Talent. J.A., Mawson. R., Gereke. M., Morrow. J.M., Day. J., and Weddige. K., 2009, Devonian climate and reef evolution: insights from oxygen isotopes in apatite: Earth and Planetary Science Letters v. 284, p. 599-609.
- Pucéat. E., Joachimski. M.M., Bouilloux. A., Monna. F., Bonin. A., Motreuil. S., Morinière. P., Hénard. S., Mourin. J., Dera. G., and Quesne. D., 2010, Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite: Earth and Planetary Science Letters v. 298, p. 135-142.
- Wenzel. B., Lécuyer. C., and Joachimski. M. M., 2000, Comparing calcite and phosphate oxygen isotope paleothermometers δ^{18} O of Silurian brachiopods and conodonts: Geochemica Cosmochimica Acta v. 64, p. 1859-1872.

Sample	Bed no.	6	5 ¹⁸ O (%VSMOW	T (°C)	
		Clarkina sp.	Hindeodus sp.	ramiforms	
Meishan B	& C sections			<u> </u>	
MSC 33	MSC 29		18.8		35.1
MSC 32	MSC 28		19.3		32.9
MSC 31	MSC 27d	20.4	19.4		28.5 / 32.8
MSC 30	MSC 27c	20.4	19.4		28.3 / 32.5
MSC 29	MSC 27b		19.5		32.1
MSC 28	MSC 27a	20.0	19.4		29.9/32.6
MSC 27	MSC 26	21.0			25.9
MSC 26	MSC 24f-1	20.9			26.3
MSB 25	MSB 24f	21.3			24.6
MSC 23	MSC 24e Top	21.3			24.6
MSC 24	MSC 24e	21.6	21.2		23.2 / 25.2
MSC 22	MSC 24e	21.0			25.9
MSC 21	MSC 24d	21.1	21.2	20.8	25.3 / 25.0 / 26.8
MSC 20	MSC 24d-4	21.4			24.2
MSC 19	MSC 24d-3	21.4			24.2
MSC 18	MSC 24d-2	21.6			23.3
MSC 17	MSC 24d-1	21.0			25.9
MSC 16	MSC 24c		21.2		25.0
MSC 15	MSC 24c-2	21.2			25.9
MSC 14	MSC 24c-1	21.0			25.0
MSC 13	MSC 24c	20.7			27.1
MSC 12	MSC 24b	20.7	20.6		27.0 / 27.6
MSC 11	MSC 24a	21.2	21.2	21.0	25.0 / 25.0 / 26.1
MSC 10	MSC 24a	21.3			24.6
MSC 9	MSC 24a base	21.5			23.8
MSC 8	MSC 23-7	22.0			21.6
MSC 7	MSC 23-4	22.0			21.6
MSB 6	MSB 23-3	21.9			22.1
MSB 5	MSB 23-1	22.3			20.4
MSC 4a	MSC 23	22.3			
MSB 4	MSB 23-1 base	21.3			24.6
MSB 3	MSB 22 top	21.8			22.5
MSC 2	MSC 22-15	21.6			23.3
MSC 1a	MSC 22c	21.3			
MSC 1	MSC 22-14	21.6			23.3
Shangsi sec	tion		1		
	33		18.7		35.5
	32		19.3	-	33.0
	31b		19.0		34.3
	31a		19.0		34.3
	30d		18.9	-	34.8
	28c	19.5			32.0
	27c	20.0		-	30.2
	27a	21.4		-	24.1
	26	21.6			23.3

Table DR1: Oxygen isotope ratios of conodonts from the Meishan and Shangsi sections (South China). Paleotemperatures are calculated using the equation given by Pucéat et al. (2010) assuming a δ^{18} O value for Late Permian sea water of -1‰ VSMOW