GSA Data Repository 2012032

Parra et al.,

Detecting earliest shortening and deform ation advance in thrust-b elt hinterlands: Example from the Colombian Andes

1. Fission Track analyses

Apatite preparation was done by Apatite to Z ircon Inc. Apatite grains were concentrated following conventional heavy liquids and m agnetic separation procedures. Apatite grains were then imm ersed in an epoxy resin and cured at 90°C for 1 h. After grinding and polishing to expose internal surfaces, the apatites in the first mount were etched in 5.5 HNO₃ for 20.0 s (\pm 0.5 s) at 21°C (\pm 1°C) to reveal spontaneous tracks. Analytical procedures followed the external detector m ethod (Gleadow, 1981). Sam ples were irradiated at the Oregon State University research reactor. Following irradiation, induced tracks were etched with 40% hydrofluoric acid at 21°C for 45 m in. Fission tracks were counte d at the U niversity of Potsdam using 1250 X magnification (dry objective) in a Leica DMRM m icroscope with drawing tube located above a digitizing tablet, and a Kinetec TM com puter-controlled stage driven b y the FTStage program (Dumitru, 1993). Ages and errors were calculated using the zet a calibration m ethod (Hurford and Green, 1983) with the software Trackkey (Dunkl, 2002), and are re ported at the 1s level. A zeta calibration factor of 350.7 \pm 6.0 for apatite (CN5 glass; M.Parra) was used for age calculations.

In samples with sufficient apatite yield, a second mount of grains was prepared. The grain mounts were then irradiat ed with approximately 10^7 tracks/cm² fission fragments from a 50 µCi (activity as of July, 1996) ²⁵²Cf source in a vacuum chamber in order to enhance the num ber of confined tracks available for m easurement (e.g., Donelick and Miller, 1991; Donelick et al., 2005). Irradiated grain mounts were then re-immersed in 5.5N HNO ₃ for 20.0 seconds (\pm 0.5 seconds) at 21 °C (\pm 1°C) to reveal any horizontal, conf ined fission tracks, and the freshly - exposed confined tracks were then measured. Both track lengths and the angle to the *c*-axis were measured by M. Parra using unpolarized ligh t. For each apatite grain from which fission-track age or leng th data were collected, an arithm etic m ean value for the kinetic param eter Dpar (Donelick et al., 2005) was determined from 1 to 4 measurements.

Complete AFT results are presented in Table DR1.

2. Thermal Modeling

The thermal histories for the two C retaceous sedimentary rocks presented in Figure 4B were obtained through inverse m odeling of apatite fission-track ages and lengths, and vitrinite reflectance data, using HeFTy v 1.6.7 (Ketcham, 2005). We m odeled kinetically hom ogeneous populations [i.e, the grains that, having si milar Dpar, yield a concordant age (P($\chi 2$)>5%)] using c-axis pro jected track lengths (Ketcham et al., 2007a), and the ap atite m ulticompositional kinetics model of Ketcham et al., 2007b). Maxi mum burial temperatures in the t-T paths were further constrained with available vitrinite reflectance measurements (Table DR2) according to the kinetic model of Burnham and Swee ney, 1989. A dditional constraints (boxes delimiting the t-T space allowed for the thermal history) for thermal m odeling were chosen so that t-T paths honor

the known geological history of the sam ples as fo llows: (1) a provenance constraint that allow residence at a wide ran ge of tem peratures b efore sed iment accum ulation; (2) a d epositional constraint that enab le perm anence of the samp le at surficial tem peratures of 15-25°C during sediment accum ulation; (3) a burial constraint allowing for a wide space for both, a potential early onset of cooling from temperatures hotter than that derived from the vitrin ite reflectance data, and a broad range of subse quent cooling paths. We used two monotonic consistent half-segments between adjacent constraints using a gradual or intermediate rand omizer sty le (Ketcham, 2005). A number of ~11000 to ~89000 models was ran u ntil 20 to 5 0 good fits (GOF>0.5, see Ketcham, 2005) were obtained. I nput and output data for therm al models are presented in Table DR3.

Figure Captions

Figure DR1: Composite refection seismic line for the northern Middle Magdalena Valley (MV) basin (see Fig. 1 for locatio n). Interpretation emphasizes the availab le well contro l, a regional, L ate Cretaceous-Paleogene unconform ity, and structural re lationships below the unconformity.

Figure DR2: Blow-up of reflection seism ic Line 4 in the northern Middle Magdalena Valley (MMV) basin (see Fig. 1 for location). In control, a regional unconformity, and structural relationships below the unconformity.

References

- Burnham, A.K., and Sweeney , J.J., 1989 , A ch emical kinetic model of vitrinite maturation and reflectance: Geochimica et Cosmochimica Acta, v. 53, p. 2649-2657.
- Donelick, R., and Miller, D.S., 1991, Enhanced TINT fission tr ack densities in l ow spontaneous track density apatites using 2 52Cf-derived fission fragment tracks. A m odel and experimental observations: Nuclear Tracks and Radiation Measurements, v. 18, p. 301-307.
- Donelick, R.A., O' Sullivan, P.B., and Ketcham, R.A., 2005, Apatite fission-track analy sis, *in* Reiners, P.W., and E hlers, T.A., eds., Low Temperature Thermochronology: Techniques, Interpretations, and Applications, Volume 58: Reviews in Mineralogy and Geochemistry, v. 58: Washington D.C, Mineralogical Society of America, p. 49-94.
- Dumitru, T.A., 1993, N ew computer-automated microscope stage system for fission-track analy sis: Nuclear Tracks and Radiation Measurements, v. 21, p. 575-580.
- Dunkl, I., 2002, Trackkey: A windows program for calculation and graphical presentation of fission track data: Computers and Geosciences, v. 28, p. 3-12.
- Ecopetrol-ICP, 2003, Madurez termal d e unidades del Cr etácico Superior en p ozos del Valle Medio del Magdalena Piedecuesta, Colombia, Instituto Colombiano del Petróleo-Ecopetrol.
- Galbraith, R.F., 19 81, On statistical models for fissi on-tracks counts: Mathematical Geolog y, v. 13, p. 471-478.
- Gleadow, A.J.W., 1981, Fission-track dating methods: what are the real alternatives?: Nuclear Tracks, v. 5, p. 3-14.
- Gómez, E., 2 001, Tectonic controls on the Late Cretaceous to Cenozoic sedi mentary fill of the Middl e Magdalena Valley Basin, Eastern Cordillera and Ll anos Basin, Colom bia [Ph.D thesis]: Ithaca, New York, Cornell University.

Green, P.F., 1981, A new look at statistics in fission-track dating: Nuclear Tracks, v. 5, p. 77-86.

- Hurford, A.J., and Green, P.F., 1983, The zeta age calibration of fission-track dating: Isotope Geoscience, v. 1, p. 285-317.
- Ketcham, R.A., 200 5, Fo rward and in verse modeling of low-tem perature therm ochronometry data, *in* Reiners, P. W., and Ehlers, T.A., e ds., Low Te mperature T hermochronology: Techniques, Interpretations, and Applications, Volume 58: Re views in Mineralog y and Geo chemistry, v. 58: Washington D.C, Mineralogical Society of America, p. 275-314.
- Ketcham, R.A., Carter, A., Donelick, R.A., Ba rbarand, J., and Hurford, A.J., 2007 a, Im proved measurement of fission-track annealing in apatite using c-axis projection: Am. Mineral., v. 92, p. 789-798.
- Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J., and Hur ford, A.J., 2007b, Improved modeling of fission-track annealing in apatite: Am. Mineral., v. 92, p. 799-810.
- Rangel, A., Moldowan, J.M., Niño, C., Parra, P., and Giraldo, B.N., 20 02, Unir form ation: Organic geochemical and stratigraphic assessment as cosource for Middle Magdalena basin oil, Colombia: American Association of Petroleum Geologists Bulletin, v. 86, p. 2069-2087.

									TABLE I	DR1. APA	fite fis	SION-TR	ACK DA	ATA										
ID #	Sample Number	Long (W)	Lat (N)	Elev. (m)	Unit	Strat position (km) [*]	Strat. Age (Ma)	# Gr	U (ppm)	Rho-S (NS) [⁺]	Rho-I (NI) [⁺]	Rho-D (ND) [§]	P(χ2) (%) [#]	Age (Ma) **	±1 σ error	Dpar (mm)	Cl (%wt)	±1σ	#	Length (µm)	error (μm)	St dev (μm)	# length	Source **
660-15	RS-SS30	73.414	7.107	194	Esmeraldas Fm.	3.00	40 ± 5	9	30	15.96 (244)	29.62 (453)	11.28 (1707)	0%	65.8	30.1	N.D. ^{§§}	0.13	0.18	9	11.18	0.53	1.67	10	1
660-14	RS-SS26	73.412	7.106	167	Esmeraldas Fm.	2.74	40 ± 5	5	38	4.708 (32)	35.46 (241)	10.59 (1707)	8%	27.6	5.3	N.D.	0.34	0.38	5	10.24	2.07	5.07	6	1
660-12	RS-SS21	73.407	7.104	244	Esmeraldas Fm.	2.43	40 ± 5	4	21	6.329 (47)	19.66 (146)	10.66 (1707)	2%	73.5	20.2	N.D.	0.53	0.68	4	9.74	0.74	2.85	15	1
660-08	RS-SS17	73.406	7.104	272	La Paz Fm.	2.15	51 ± 6	15	22	4.013 (125)	21.03 (655)	10.74 (1707)	0%	40.3	7.7	N.D.	0.59	0.58	15	11.62	0.32	1.07	11	1
660-07	RS-SS14	73.402	7.103	386	La Paz Fm.	2.00	51 ± 6	8	30	3.558 (45)	28.78 (364)	10.81 (1707)	97%	26.2	4.2	N.D.	0.59	0.58	8	8.94	1.36	2.71	4	1
660-06	RS-SS10	73.401	7.103	450	La Paz Fm.	1.81	51 ± 6	26	34	6.894 (318)	32.08 (1460)	10.89 (1707)	0%	40.8	5.1	N.D.	0.50	0.54	26	11.56	0.19	2.15	132	1
660-05	RS-SS08	73.395	7.100	315	La Paz Fm.	1.31	51 ± 6	4	12	1.30 (9)	11.12 (77)	10.96 (1707)	5%	25.1	8.9	N.D.	0.41	0.22	4	N.A.	N.A.	N.A.	0	1
660-04	RS-SS05	73.394	7.099	299	La Paz Fm.	1.20	51 ± 6	28	19	3.86 (317)	18.22 (1496)	11.04 (1707)	1%	45.5	4.6	N.D.	0.53	0.50	28	10.52	0.24	2.58	118	1
660-02	RS-SS02	73.392	7.100	341	Lisama Fm.	1.06	61 ± 5	20	15	1.483 (87)	15.07 (884)	11.11 (1707)	1%	22.3	4.2	N.D.	0.40	0.54	20	9.85	0.46	2.10	21	1
660-01	RS-SS01	73.384	7.086	340	Lisama Fm.	0.54	61 ± 5	25	17	3.080 (216)	16.46 (1156)	11.19 (1707)	1%	36.0	5.3	N.D.	0.20	0.34	25	10.25	0.39	2.80	51	1
1018-03	RS 011409-1	73.327	7.217	407	Lisama Fm.	0.25	61 ± 5	3	14	6.02 (27)	15.386 (69)	11.941 (8201)	20%	81.4	18.6	1.29	N.D.	0.12	3	N.A.	N.A.	N.A.	0	2
1018-04	DD	73.357	7.085	316	Umir Fm.	-0.52	74 ± 9	20	15	4.326 (62)	15.56 (223)	12.08 (8201)	66%	58.6	8.5	2.29	N.D.	0.539	20	12.4	0.22	1.51	49	2
660-37		73.350	7.078	291	Umir Fm.	-0.84	74 ± 9	20	13	3.497 (169)	17.38 (840)	14.72 (2335)	44%	56.1	4.9	N.D.	1.22	0.59	20	12.73	0.40	1.91	23	1
1018-05	BB 011309-2	73.306	7.149	794	La Luna Fm.	-1.10	85±5	14	59	6.284 (68)	38.441 (416)	12.218 (8201)	32%	34.9	4.6	1.657	N.D.	0.375	12	10.084	1.23	2.466	4	2
1018-06	DD				Simiti Fm.	-2.30	106 ± 6	15	27	8.091 (198)	33.877 (829)	12,357 (8201)	23%	51.5	4.2	1.38	N.D.	0.18	14	12.11	0.26	1.65	39	2
660-36	Tablazo 1	73.350	7.040	316	Tablazo Fm.	-2.42	118±6	21	27	(100) 11.40 (305)	35.60 (952)	14.88 (2335)	0%	65.5	17.1	N.D.	0.09	0.13	21	11.14	0.28	1.38	24	1
1018-07	BB	73.281	7.179	1148	Tablazo Fm.	-2.60	118±6	21	27	5.331 (158)	(785)	(2000) 12.495 (8201)	92%	43.9	3.9	1.477	N.D.	0.284	21	N.A.	N.A.	N.A.	0	2
	DD	73.276	7.145	1150	Tambor Fm.	-3.60	138 ± 8	1	48	3.846 (3)	(703) 52.568 (41)	(8201) (8201)	N.A. ##	16.2	6.9	1.24	N.D.	N.A.	1	N.A.	N.A.	N.A.	0	2
1018-09	DD				Giron Gr.	-5.20	161 ± 15	5	29	8.411 (41)	(176)	(0201) 12.773 (8201)	2%	60.4	20.7	1.68	N.D.	0.84	5	N.A.	N.A.	N.A.	0	2
360-34	Giron-SS	73.258	7.125	1125	Giron Gr.	-5.25	161 ± 15	2	19	(41) 1.673 (6)	(170) 25.65 (92)	(0201) 15.12 (1733)	63%	18.7	7.9	N.D.	0.36	0.14	2	N.A.	N.A.	N.A.	0	1
1018-10	BB 011309-	73.192	7.104	1133	Giron Gr.	-7	161 ± 15	2	34	9.402 (33)	(92) 50.146 (176)		35%	42.3	8.1	1.065	N.D.	0.473	2	N.A.	N.A.	N.A.	0	2

Stratigraphic position of samples from the Eastern Cordillera with respect to a datum, choosen at the base of the Lisama Formation RhoS and Rho I are the spontaneous and induced tracks density measured, respectively (x 10⁵ tracks/cm²). NS and NI are the number of spontaneous and induced tracks counted for estimating RhoS and + § RhoD is the induced track density measured in the external mica detector attached to CN2 dosimetry glass (x 10⁵ tracks/cm²). ND is the number of induced tracks counted in the mica for estimating RhoD.

(χ 2) (%) is the chi-square probability (Galbraith, 1981; Green, 1981). Values greater than 5% are considered to pass this test and represent a single population of ages

** Pooled (central) age reported for ages that pass (fail) the χ^2 test

1. Gomez (2001) ; 2. This study **††**

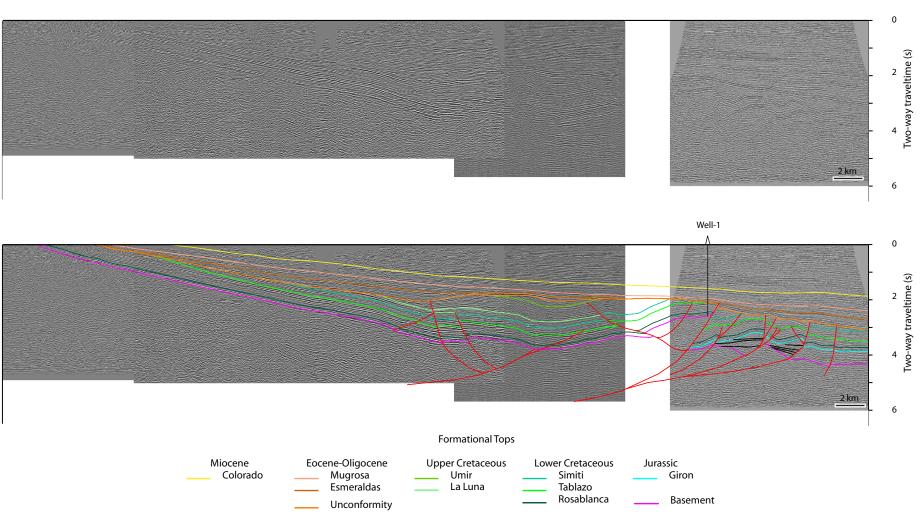
N.D.: No data §§

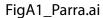
N.A.: Not applicable ##

TABLE DR2. VITRINITE REFLECTANCE DATA

Sample		Lat (NI)	Unit	Strat position	Ro	S.D	Source*
Number	Long (W)	Lat (IN)	Unit	(km) [*]	(%)	(%)	Source
RS-G26	73.348	7.234	Esmeraldas Fm.	2.50	0.53	0.03	Gomez, 2001
RS-G13	73.340	7.232	La Paz Fm.	1.75	0.55	0.05	Gomez, 2001
RS-PL1	73.330	7.220	Lisama Fm.	0.60	0.48	0.05	Gomez, 20031
N.D. [†]	73.368	7.094	Umir Fm.	-0.30	0.53	0.03	Rangel et al., 2002
CE-Umir	73.377	7.684	Umir Fm.	-0.80	0.61	0.05	Ecopetrol-ICP, 2003
CE-Luna	73.377	7.149	La Luna Fm.	-1.20	0.77	0.04	Ecopetrol-ICP, 2003
CE-Simiti	73.377	7.154	Simiti Fm.	-2.30	0.82	0.06	Ecopetrol-ICP, 2003

Stratigraphic position of samples from the Nuevo Mundo Sincline with respect to a datum, N.D.: No data +


	TABLE DR3. RESULTS OF APATITE FISSION-TRACK MODE	LING
--	--	------


	Kinet	tic Age							Le	ength			Vitrinite re	eflectanc	e
Sample		Dpar (μm)	Ν	Model (Ma)	Measured (Ma)	GOF *	Old (Ma) [†]	Ν	Model (µm)	Measured (µm)	GOF [*]	Model (%)	Measured (%)	GOF [*]	Ro Model §
1018-04	N.D [#]	2.77	20	57.8	58.6 ± 8.5	0.92	104.0	50	13.60 ± 1.43	13.98 ± 0.94	0.79	0.70	0.70 ± 0.05	0.95	Easy Ro%
<u>1018-06</u> * † § #	GOF is Oldest t	rack mode reflectanc	eled					ata (k	14.11 ± 1.01 (etcham, 2005) ue and tempe	5); A good fit	nas GOF>0	,	0.70 ± 0.05 ceptable fit h	0.70 as GOF	Easy Ro%_ >0.05

Line 4

Line 2

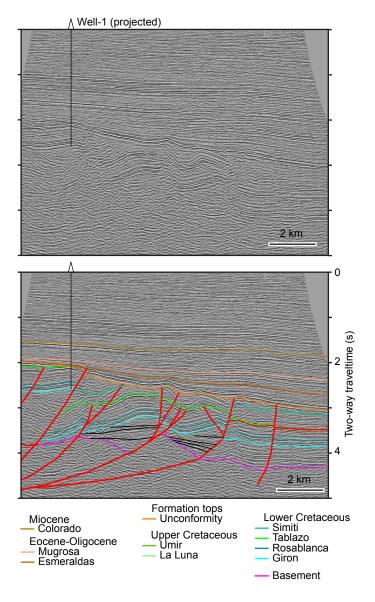


Fig 2_Parra.ai