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Methods 
 
To provide a minimal model for melt flow at Sapat, we modify the formulation of 
Connolly and Podladchikov (2007) for fluid flow through a porous matrix with 
differential viscous yielding to account for temperature dependent solubility of the 

matrix. Assuming the small porosity limit 1 →1, isostatic compaction, the fluid and 
solid are incompressible and have the same specific heat, and viscous dissipation is 
insignificant, the governing equations are conservation of solid mass 
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conservation of total mass combined with Darcy’s law
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and conservation of energy
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where , t, T, pe and c are, respectively, porosity, time, temperature, effective pressure, 
and the volumetric solubility of the solid in the fluid; g is gravitational acceleration; uz is 

an upward directed unit vector; the fluid shear viscosity (f), thermal diffusivity (), 

densities (s, f,  =sf), and latent heat of solution (h) normalized by specific heat 

are constants. The permeability (k) and bulk viscosity () are given by the constitutive 
relations 
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where k0 and 0 are the background values of the permeability and porosity, s is the 
shear viscosity of the solid, H is the Heaviside function, and R is the ratio of bulk 
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viscosity in decompaction to that in compaction. Convenient scales for non-
dimensionalization are the viscous compaction length 
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the viscous compaction time scale 
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and the temperature difference between the top and base of the model domain 

up lowT T T   . 

Making use of these scales and the constitutive relations, the non-dimensional forms of 

the governing equations are  
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where 0f    is the relative porosity, e
 p p p  is the dimensionless fluid 

overpressure relative to lithostatic conditions, and '  t t is the dimensionless time. 

  
Our formulation is for the reversible solubility of a saturated phase or phase assemblage 
and strictly cannot describe the independent variation of orthopyroxene and 
clinopyroxene observed at Sapat if these variations are due to solubility effects. As an ad-
hoc model for these variations we discriminate precipitated and dissolved solid, the 
former being attributed to orthopyroxene and the latter being attributed to clinopyroxene. 
The initial temperature distribution is taken to be the steady state temperature for non-



reactive melt flow through a matrix with uniform porosity. To induce two-dimensional 
flow instability at the onset of the model we introduce a radially symmetric Gaussian 

perturbation to the initially uniform porosity (0) near the base of the spatial domain. The 

perturbation has a maximum amplitude of 20 and a half-width radius of 0.7. To 

stabilize the numerical calculations, melt flow is non-reactive within 2 of the upper and 
lower boundaries. The numerical calculations are done by finite difference methods as 
described by Connolly and Podladchikov (2007) except that upwind finite differences are 
used to evaluate the advective term in the heat flow equation. Three-dimensional effects 
would be likely to enhance melt focusing, thereby enhancing the advective heat effects 
illustrated here. 
 

The length and width of the model domain are L = 50 and W = 10. The compaction 

equations together with Eq A1 are fully parameterized by , , 0, Tup, Tlow, / , c T h0, , 

and R. The temperature of dependence of the matrix solubility / c T is taken to be 0.001 
K-1, i.e., the matrix melts over an interval of 1000 K. The enthalpy of melting h0, 
estimated from the enthalpy and heat capacities of pyroxenes and olivine (Ghiorso et al., 

2002), was taken to be 400 K; and  is taken to be 10-6 m2/s. To the extent that the 
previous parameters can be considered to be constants, the absolute temperatures for the 

model are irrelevant, accordingly we take TupTlow = L 0.007 K/m.  The final parameter, 
R, characterizes the mechanical compaction instability and is expected to be comparable 
to ratio of the width of channelized flow features to the distance between these features 
(Connolly & Podladchikov 2007). On the basis of the size and spacing of the Sapat 
dunites a lower bound on R would be ~0.1 if the mechanism was indeed responsible for 
the channelized flow. Smaller values of R would lead to stronger channelization and 
larger advective heat effects than those illustrated by our numerical models. 
 

References: 

Connolly, J.A.D., and Podladchikov, Y.Y., 2007, Decompaction weakening and 
channeling in ductile porous media: Implications for asthenospheric melt 
segregation: Journal of Geophysical Research, v. 112, p.1-15 
doi:10.1029/2005JB004213. 

 
Ghiorso, M. S., M. M. Hirschmann, P. W. Reiners, and V. C. Kress (2002), pMELTS: A  

revision of MELTS for improved calculation of phase relations and major element  
partitioning related to partial melting of the mantle to 3 GPa, Geochemistry 
Geophysics  
Geosystems, 3, 



 




