
METHODS

Zircon for U–Pb and U–Th geochronology was separated from ~0.2–2 kg crushed

and sized samples using heavy liquids, mounted on glass and cast in 25 mm diameter

epoxy plugs along with R33 standard zircon grains, ground to expose grains in cross

section, polished, and imaged with reflected light and SEM cathodoluminescence (CL).

Inclusions exposed on polished surfaces of zircon crystals were located with SEM

backscattered-electron imaging and identified by their x-ray energy spectra.  Spots were

selected for analysis with the Sensitive High-Resolution Ion Microprobe with Reverse

Geometry (SHRIMP-RG) at the Stanford–USGS laboratory at Stanford University on the

basis of internal zoning revealed in CL.  During the mass scans for U–Pb geochronology

concentrations of U, Th, Hf, La, Ce, Nd, Sm, Eu, Gd, Dy, Er, and Yb also were

measured.

Prior to analysis with the Sensitive High-Resolution Ion Microprobe with Reverse

Geometry (SHRIMP-RG) at the Stanford–USGS laboratory at Stanford University, the

epoxy plug was washed with saturated EDTA and dilute HCl solutions, rinsed with

distilled water, dried in a vacuum oven, and coated with 100 nm of gold. A primary beam

of O2
– with intensities of ~6 nA for U–Pb analyses and ~10-15 nA for 238U–230Th

analyses was focused into a 20–30 micrometer spot to generate secondary ions.  The

primary beam was rastered for 90–120 seconds over the analysis area before data were

collected.  For U–Pb geochronology, counts for secondary ions were collected

sequentially with a single ETP electron multiplier on the following peaks:  90Zr2
16O+ (2 s),

204Pb+ (8 s), background (8 s at 0.050 mass units above 204Pb+), 206Pb+ (30 s), 207Pb+ (20 s),

208Pb+ (8 s), 238U+ (6 s), 232Th16O+ (3 s), 238U16O+ (3 s), 139La+ (2 s), 140Ce+ (1 s each for rest),
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89Y+, 146Nd+, 147Sm+, 153Eu+, 155Gd+, 163Dy16O+, 166Er16O+, 172Yb16O+, 180Hf16O+, and 238U16O2
+;

measurements were made at mass resolution of ~8000–9500 (10% peak height), which

resolves all interfering atomic species.  For U–Th analyses, secondary ion intensity was

measured over seven scans for 90Zr2
16O+ (2 s), 180Hf16O+ (2 s), 238U16O+ (6 s), 230Th16O+

(60 s), background at 0.05 amu below 230Th16O+ (60 s), 232Th16O+ (3 s), 235U16O+ (6 s),

238U16O+ (3 s) and 232Th12C+ at ~244 amu (10 s) to monitor for a potential isobaric

interference at mass 246 due to partial overlap of the primary beam on surrounding epoxy

(see Schmitt, 2006).  Relative ionization between U and Th was constrained by repeated

intra-session analysis of standards R33 (419 Ma, quartz diorite of Braintree complex,

Vermont, Black et al., 2004) and homogenous in-house MAD-green zircon from

Madagascar (Barth and Wooden, 2010), both of which are sufficiently old (ca. 419 and

555 Ma, respectively) to have 238U and 230Th in secular equilibrium.  Concentration data

for zircons were standardized against MAD-green zircon relative to intensities for

90Zr2
16O+; U–Pb ages were calculated by calibration against zircon standard R33 which

was analyzed repeatedly throughout the duration of the analytical sessions.  Data

reduction followed the methods described by Williams (1997) and Ireland and Williams

(2003), and used the Squid 1 and Isoplot programs of Ken Ludwig (Ludwig 2001, 2003).

Whole rock major- and trace-element concentrations were determined by

GeoAnalytical Laboratories (Washington State University) on powders of the three

largest samples (19B, 24B, 24C); comparable data for sample 5i appear in Nye et al.

(1994, table 4).  Minerals and glass in the six samples were analyzed with a JEOL 8900

electron microprobe at the USGS in Menlo Park, California.



FIGURES

Figure DR1.  Transmitted light images of polished thin sections of xenoliths from

Redoubt Volcano.  Images are approximately 2.4 x 3.6 cm.  A: Crystal-rich andesite 19B.

Plagioclase in gabbroic clusters in lower center region is An83–92 zoned to rims as low as

An46; large sieved plagioclase is mainly An48–59 with rims of similar composition; two

plagioclase inclusions in hornblende oikocryst near upper center are An88 and An64 zoned

to An57 and An51, respectively.  Hornblende oikocryst is identical in composition to those

in gabbro 22.  Note textural heterogeneity of sample and doublet of olivine xenocrysts

(Fo81, 900 ppm Ni) with opaque mantle in right center.  B: Gabbro 22.  Plagioclase cores

are An79–89, rims are An59–63, and inclusions in hornblende oikocrysts are An56–85 zoned to

An55–70.  C: Gabbro 24B.  Typical plagioclase cores are An75–79, rims An55–58.  D: Gabbro

21B.  Typical plagioclase is An94–95, with rims An47–68.  Olivine, enclosed in pyroxene, is

Fo75–79, ~300 ppm Ni.  E: Gabbro 24C.  Typical plagioclase cores are An77–84, rims An55–76.

F: Gabbro 5i.  Plagioclase cores are An79–85 with many being An80–81; rims are An45–53.

Figure DR2.  Concordia diagrams for SHRIMP-RG zircon U–Pb data.  Uncertainties for

error ellipses are ±2σ.  Numbers by blue concordia curves are ages in Ma.  Numbers

adjacent to error ellipses identify specific spot analyses.  A: Crystal-rich andesite 19B.

B: Gabbro 22.  C: Gabbro 24B.  D: Gabbro 21B.  E: Gabbro 24C.  F: Gabbro 5i.

Figure DR3.  Whole rock compositions of xenoliths and crystal-rich andesite from

Redoubt Volcano.  A: Elemental abundances normalized to primitive mantle values (Sun

and McDonough, 1989).  B: Rare earth element abundances normalized to chondrite

values  (Sun and McDonough, 1989).



Figure DR4.  Cathodoluminescence images of zircons from xenoliths from Redoubt

Volcano.  Images of polished grain mounts were obtained with a JEOL scanning electron

microscope.  Sample number appears at top of image (e.g., 08RDCRB019B).  All CL

images are shown, including those for which no zircons were analyzed.  Numbers by

individual zircons identify analyses, e.g., 72.1 is zircon 72, analysis spot 1 in the sample.

Numbers with uncertainties listed, e.g., 1861±8, are 238U/206Pb (<1000 Ma) or 207Pb/206Pb

(≥1000 Ma) ages in Ma; uncertainties are ±1σ (D indicates analysis was >10%

discordant).  For two grains (08RDCRB019B zircon 62 and 90CNR05i zircon 1),

238U–230Th disequilibrium model ages are given; these are identified by units of ka.

Uranium concentrations are given in separate CL images of low-U zircons.

Figure DR5.  Concentrations of U and Hf (ppm) and Ce/Ce* ratios in zircon obtained

during SHRIMP-RG U–Pb geochronology analyses.  Symbols indicate age groups for

nominal ages of analysis spots for all six samples plotted together.  Note largely separate

groups for 1800–1900 Ma and 280–350 Ma points.  A: U vs. Hf.  B: Ce/Ce* vs. Hf.

Figure DR6.  Concentration ratios Yb/Gd vs. Th/U in zircon obtained during SHRIMP-

RG U–Pb geochronology analyses.  Symbols indicate age groups for nominal ages of

analysis spots for all six samples plotted together.  Note coherent trend in 1800–1900 Ma

data and clustering of most 280–350 Ma points.

Figure DR7.  Concentration ratio U/Ce vs. Th (ppm) in zircon obtained during SHRIMP-

RG U–Pb geochronology analyses.  Symbols indicate age groups for nominal ages of



analysis spots for all six samples plotted together.  Gray lines give reference U/Ce:Th

ratios.  Non-igneous zircon plots at U/Ce>2xTh.  Note separation into two clusters for

majority of 1800–1900 Ma and 280–350 Ma points.  Spot analyzes with U/Ce >2 likely

represent zircon that precipitated from aqueous fluid.

Figure DR8.  Concentrations of REE in zircon obtained during SHRIMP-RG U–Pb

geochronology analyses normalized to those in chondritic meteorites (Korotev, 1996).

Values for Pr calculated on the basis of those for La and Nd.  Symbols indicate age

groups for nominal ages of analysis spots.  A: Crystal-rich andesite 19B.  B: Gabbro 22.

C: Gabbro 24B.  D: Gabbro 21B.  E: Gabbro 24C.  F: Gabbro 5i.
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Figure DR1.  Transmitted light images of polished thin sections of xenoliths from

Redoubt Volcano.  Images are approximately 2.4 x 3.6 cm.  A: Crystal-rich andesite 19B.

Plagioclase in gabbroic clusters in lower center region is An83–92 zoned to rims as low as

An46; large sieved plagioclase is mainly An48–59 with rims of similar composition; two

plagioclase inclusions in hornblende oikocryst near upper center are An88 and An64 zoned

to An57 and An51, respectively.  Hornblende oikocryst is identical in composition to those

in gabbro 22.  Note textural heterogeneity of sample and doublet of olivine xenocrysts

(Fo81, 900 ppm Ni) with opaque mantle in right center.  B: Gabbro 22.  Plagioclase cores

are An79–89, rims are An59–63, and inclusions in hornblende oikocrysts are An56–85 zoned to

An55–70.  C: Gabbro 24B.  Typical plagioclase cores are An75–79, rims An55–58.  D: Gabbro

21B.  Typical plagioclase is An94–95, with rims An47–68.  Olivine, enclosed in pyroxene, is

Fo75–79, ~300 ppm Ni.  E: Gabbro 24C.  Typical plagioclase cores are An77–84, rims An55–76.

F: Gabbro 5i.  Plagioclase cores are An79–85 with many being An80–81; rims are An45–53.
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Figure DR2.  Concordia diagrams for SHRIMP-RG zircon U–Pb data.  Uncertainties for error ellipses are 
±2σ.  Numbers by blue concordia curves are ages in Ma.  Numbers adjacent to select error ellipses identify 
specific spot analyses.  A: Crystal-rich andesite 19B.  B: Gabbro 22.  C: Gabbro 24B.  D: Gabbro 21B.  E: 
Gabbro 24C.  F: Gabbro 5i.
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Figure DR4.  Cathodoluminescence images of zircons from xenoliths from Redoubt

Volcano.  Images of polished grain mounts were obtained with a JEOL scanning electron

microscope.  Sample number appears at top of image (e.g., 08RDCRB019B).  All CL

images are shown, including those for which no zircons were analyzed.  Numbers by

individual zircons identify analyses, e.g., 72.1 is zircon 72, analysis spot 1 in the sample.

Numbers with uncertainties listed, e.g., 1861±8, are 238U/206Pb (<1000 Ma) or 207Pb/206Pb

(≥1000 Ma) ages in Ma; uncertainties are ±1σ (D indicates analysis was >10%

discordant).  For two grains (08RDCRB019B zircon 62 and 90CNR05i zircon 1),

238U–230Th disequilibrium model ages are given; these are identified by units of ka.

Uranium concentrations are given in separate CL images of low-U zircons.
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Figure DR6.  Concentration ratios Yb/Gd vs. Th/U in zircon obtained during SHRIMP-RG 
U–Pb geochronology analyses.  Symbols indicate age groups for nominal ages of analysis 
spots for all six samples plotted together.  Note coherent trend in 1800–1900 Ma data and 
clustering of most 280–350 Ma points.

Figure DR7.  Concentration ratio U/Ce vs. Th (ppm) in zircon obtained during SHRIMP-RG 
U–Pb geochronology analyses.  Symbols indicate age groups for nominal ages of analysis 
spots for all six samples plotted together.  Gray lines give reference U/Ce:Th ratios.  Non-
igneous zircon plots at U/Ce>2xTh.  Note separation into two clusters for majority of 1800-
1900 Ma and 280–350 Ma points.  Spot analyzes with U/Ce >2 likely represent zircon that 
precipitated from aqueous fluid.
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Figure DR8.  Concentrations of REE in zircon obtained during SHRIMP-RG U–Pb geochronology analyses 
normalized to those in chondritic meteorites (Korotev, 1996).  Values for Pr calculated on the basis of those for La 
and Nd.  Symbols indicate age groups for nominal ages of analysis spots.  A: Crystal mush 19B.  B: Gabbro 22.  
C: Gabbro 24B.  D: Gabbro 21B.  E: Gabbro 24C.  F: Gabbro 5i.


	Redoubt DR text 110210
	Redoubt Fig DR1fnl
	08RDCRB019B10x7
	08RDCRB02210x7
	08RDCRB024B10x7
	08RDMLC021B10x7
	08RDCRB024C10x7
	90CNR05i10x7

	Redoubt Fig DR2fnl
	Redoubt Fig DR3fnl
	Redoubt Fig DR4fnl
	Redoubt Figs DR5_6fnl
	Redoubt Fig DR7fnl



