Supplementary Online Material for "The Rhone Glacier was smaller than today for most of the Holocene" ## **Geological Setting** During the Last Glacial Maximum (LGM), the Swiss Alps were covered, with the exception of the highest peaks, by a large ice cap consisting of a few main domes and outlet glaciers (Kelly et al., 2004). These LGM glaciers and previous glaciations contributed to the classic alpine topography seen today. The Rhone Glacier, forming the headwaters of the Rhone River, was one of the largest outlet glaciers. Since the Egesen Stade, the Rhone Glacier has retreated into its modern valley and has since re-expanded into the Rhone Valley during the Little Ice Age (Fig. DR1). Since the termination of the Little Ice Age in the mid 19th century, the Rhone Glacier has retreated above a large riegel (Fig. DR1). Figure DR1. Images showing the extent of the Rhone Glacier in 1900 CE, approximately 50 years after the Little Ice Age maximum, and CE2008. The terminus has retreated up the large riegel and now sits within a small over-deepening. During the LIA the sample surfaces were buried by the Rhone Glacier with a thickness of ≥ 60 m, ceasing cosmogenic nuclide production. Images courtesy of Glaciers Online (http://www.swisseduc.ch/glaciers/alps/rhonegletscher/index-en.html, access date January 25, 2011). The Rhone Glacier is a natural test-bed for the ¹⁴C/¹⁰Be method presented here as it is one of the largest remaining glaciers in the Swiss Alps and is known to respond sensitively to climate changes (Stroeven et al., 1989; Wallinga and van de Wal, 1998). Its history is also well documented. In front of the Rhone Glacier terminus, clean, washed bedrock is extensively exposed. Samples were taken from bedrock surfaces, typically from the tops of roche moutonnée type features. Most of the bedrock samples were exposed by the retreating Rhone Glacier in 2005-2006 CE and are currently approximately 30 m from the ice front (Table DR1; Fig. DR2). Figure DR2. Photograph of typical sampled surface (Rho-2). All samples are from striated and polished bedrock. Samples are from no more than 30 m in front of modern glacier terminus and were buried by the glacier as late as 2006 CE. Many of the sampled surfaces are from the tops of roche moutonnée type features. We sampled abraded surfaces only, avoiding surfaces showing evidence for former quarrying processes. #### **Materials and Methods** # ¹⁴C/¹⁰Be Burial Dating In situ ¹⁴C is a new isotopic tool (Lifton et al., 2001) that can be used to understand the exposure history of a geomorphic surface. The systematics of in situ ¹⁴C production is similar to ¹⁰Be and can be used for simple exposure dating (see below). Because of its short (5730 year) half-life, in situ ¹⁴C is arguably most useful when combined with other long-lived or stable cosmogenic nuclides, such as ¹⁰Be (1.387±0.012 Myr; Anderson et al., 2008; Chmeleff et al., 2010; Korschinek et al., 2010; Miller et al., 2006). During periods of exposure to cosmic rays, ¹⁴C and ¹⁰Be are produced in the quartz phase of the granitic bedrock underlying the Rhone Glacier at an initial ratio of about 3.2 for production by fast neutron spallation (Dugan et al., 2008; Lifton et al., 2001). Inclusion of production by muons increases the initial ¹⁴C/¹⁰Be ratio because the fraction of ¹⁴C produced by muons is greater than the comparable fraction for ¹⁰Be (Heisinger et al., 2002a; Heisinger et al., 2002b). The evolution of the ¹⁴C/¹⁰Be ratio decreases with exposure time, even for continuous exposure (Fig. DR3). During ice extents greater than today, sampled bedrock surfaces were buried by many meters of ice >100 m during LIA (Fig. DR1). During these periods of burial, the 14 C/ 10 Be ratio decays as a function of the burial time with essentially the half-life of ¹⁴C. Therefore if the measured ¹⁴C/¹⁰Be ratio is below the production ratio, we can estimate the duration of burial by ice, in addition to exposure. Figure DR3. ¹⁴C-¹⁰Be paired-isotope plot showing the evolution of the ¹⁴C/¹⁰Be ratio versus ¹⁰Be concentration. Upper heavy black curve represents evolution under continuous exposure and zero erosion. Lower heavy black curve defines field of continuous exposure with steady-state erosion. Exposure time increases to the right along the curves, example exposure durations indicated by labeled vertical dashed lines; burial duration increases vertically downwards along vertical dashed lines. The ¹⁴C/¹⁰Be ratio is primarily controlled by the exposure and burial history. The absolute concentration of ¹⁰Be is a function of exposure time and amount of glacial erosion during burial, decay of ¹⁰Be is negligible during the relatively short time-scales (~10 ka) discussed here. The concentration of ¹⁴C is a function of exposure, burial, and erosion. Note, that decay of the ¹⁴C/¹⁰Be ratio during burial is not simply a function of burial duration in this case because of the assumption of erosion during burial and the non-constant nature of ¹⁴C/¹⁰Be ratio with depth when muogenic production is included (Fig. DR4). Figure DR4. ¹⁴C/¹⁰Be depth profile at ~46°N, 8.5°E, and 2250 m elevation, typical of our samples, for spallation only (black line) and spallation+muogenic production (blue line). ## ¹⁰Be and ¹⁴C Production Rates We have adopted the ¹⁰Be production rates presented in Balco et al. (2009) from Late Glacial moraines in northeastern North America. ¹⁴C rates are based on data presented in Lifton et al. (2001) and Dugan et al. (2008). The production rate measurements in these studies are derived from pluvial Lake Bonneville shorelines in Utah and supra-glacial landslide deposits in northwest Scotland. We also adopt the scaling model presented in Lifton et al. (2005) and average the production rates over the last 10 kyr. The sea level high latitude ¹⁰Be and ¹⁴C spallation production rates used in this study are therefore 4.5±0.2 ¹⁰Be at g⁻¹ yr⁻¹ (relative to 07KNSTD3110 with a ¹⁰Be/⁹Be ratio of 2.85 x 10⁻¹²) and 14.4±0.5 ¹⁴C at g⁻¹ yr⁻¹, respectively, yielding a ¹⁴C/¹⁰Be production ratio for spallation of 3.2±0.2). Production by muons is independently calculated based on the cross-sections presented in Heisinger et al. (2002a; 2002b). The choice of ¹⁴C and ¹⁰Be production rates, as well as the scaling model employed, has little impact (<10%) on the results or conclusions drawn from the ¹⁴C and ¹⁰Be measurements. ### **Analytical Methods** In situ 14 C: Extraction of 14 C was carried out at the Lamont-Doherty Earth Observatory in situ 14 C Laboratory, following the methods of Lifton et al. (2001) and Pigati (2004). 14 C activities were measured at the University of Arizona Accelerator Mass Spectrometry Facility. Measured 14 C activities are corrected for δ^{13} C differences from the Oxalic Acid 14 C Standard used for measurement. A five-gram split of the quartz used for 10 Be analysis was fused in a 50 torr research grade O_2 atmosphere (Table DR2). Procedural blank measurements were made before and after a series of samples and the long-term average of the number of 14 C atoms (3.36±0.83 and 1.57±0.28 x 10^5 14 C at) in the procedural blanks was subtracted from each sample (Tables DR3-DR5). The samples measured in 2010 show a lower and better-constrained blank, while the samples measured during 2009 have a higher blank with more analytical uncertainty (Table DR3). Because the blank correction is considerable (15-65%), we have placed more emphasis on the more robust 14 C measurements performed in 2010. ¹⁰Be: Chemical processing for ¹⁰Be was carried out in the Lamont-Doherty Earth Observatory Cosmogenic Nuclide Laboratory following routine beryllium isolation methods (http://www.ldeo.columbia.edu/tcn/), which is based on the procedures used at the University of Washington (http://depts.washington.edu/cosmolab/chem.html). We used a low-level Be-carrier (10 Be/ 9 Be ~ 10^{-16}). All 10 Be/ 9 Be ratios (Table DR2) were measured at the Lawrence-Livermore National Laboratory Center for Accelerator Mass Spectrometry relative to the 07KNSTD3110 standard with a ratio of 2.85 x 10^{-12} (Nishiizumi et al., 2007) and corrected for background 10 Be/ 9 Be given by the procedural blanks, residual boron contamination, and machine background (all background 10 Be/ 9 Be ratios were less than 2x10⁻¹⁵). #### **Method Assumptions** Last Ice Age glaciation reset alpine bedrock: We base our calculations on the assumption that the large glaciations of the last ice-age, lasting for many tens of thousands of years, 'reset' the cosmogenic clock in the sampled bedrock surfaces (i.e. that the cosmogenic inventory of subglacial bedrock was zero at the end of the late glacial period about 12 kyr ago). We conservatively assume the total erosion of the Rhone Glacier, including abrasion and quarrying processes, integrated over the entire last glacial cycle at the sampling sites to be on the order of meters. We quantitatively verified this assumption by measuring the cosmogenic nuclide ²⁶Al in 26 Al of half-life is approximately some of samples. The (http://www.nndc.bnl.gov/chart/, access date January 25, 2011). If ²⁶Al and ¹⁰Be were produced in the sampled bedrock prior to the last glacial cycle, the ²⁶Al ages would show discordance from the ¹⁰Be ages due to more rapid decay of ²⁶Al than ¹⁰Be during the extended periods of burial during the last glacial cycle. On the other hand, if all cosmogenic nuclides produced prior to the last glacial cycle were removed from the bedrock via erosion, and all the measured cosmogenic nuclides were produced during the Holocene, ²⁶Al and ¹⁰Be ages would agree. Results for samples Rho-1, -2, -3, and -4 show general concordance between the ¹⁰Be and ²⁶Al age (Fig. DR5; Tables DR1 and DR5), which suggests that any previous exposure was removed by glacial erosion and that the measured ¹⁰Be was produced during the Holocene period. **All samples experienced same ex posure/burial history:** Based on geomorpho-stratigraphic arguments that are independently confirmed by the multi-isotope data, we assume that all samples experienced the same exposure and burial history. This assumption is generally confirmed by consistent ¹⁴C/¹⁰Be ratios of samples Rho-6 through Rho-11 (Table DR1). The greater scatter in the ¹⁴C/¹⁰Be ratios of samples Rho-1 through Rho-5 is most likely due to the higher ¹⁴C blank correction (see above). Figure DR5. Plot of 26 Al versus 10 Be age showing general concordance between the two nuclides, supporting the scenario that the bedrock surfaces were reset with respect to their cosmogenic nuclide inventory during the last glacial cycle (see Tables DR1 and DR5 and main text). Uncertainties are shown at 1σ level. All samples overlap with 1:1 line at 2σ . ¹⁴C and ¹⁰Be production by muons during periods of burial is negligible: Production of ¹⁰Be and ¹⁴C by fast-neutron spallation is rapidly attenuated with depth in earth surface materials; however, production by muons is much less strongly attenuated at depth. Therefore, during typical periods of burial (~60 m of ice) production of both ¹⁰Be and ¹⁴C is effectively zero. As a test of the sensitivity of our results to production by muons during burial, we adopt an unlikely scenario of burial by only 10 m of ice for 1000 years. Results are a ¹⁰Be production rate (includes spallation and muons) of 0.05 at g⁻¹ yr⁻¹ and 0.8 at g⁻¹ yr⁻¹ for ¹⁴C. The integrated production of both these nuclides for 1000 years, even disregarding decay of ¹⁴C, is ≤ 1 % of the measured ¹⁴C concentration and ≤ 2 % for ¹⁰Be, both of which are within the 1σ uncertainties of the measurements. We conclude that production by muons has negligible effects for this study. ### Exposure, Burial and Erosion Rate Calculations The burial durations (t_b) and erosion depths (E) for each sample can be determined by: $$N_{10}(t_b, E) = \left[P_{10_{sp}} e^{-E/\Lambda_{sp}} + P_{10\mu} e^{-E/\Lambda_{\mu}} + P_{10\mu_{fast}} e^{-E/\Lambda_{\mu_{fast}}} \right] \frac{1}{\lambda_{10}} \left(1 - e^{-(t_i - t_b)\lambda_{10}} \right) e^{-\lambda_{10}t_b}$$ (S1), and: $$R_{\frac{14}{10}}(t_{b},E) = \frac{\left[P_{14_{sp}}e^{-\frac{E}{\Lambda_{sp}}} + P_{14_{\mu}}e^{-\frac{E}{\Lambda_{\mu}}} + P_{14_{\mu_{fast}}}e^{-\frac{E}{\Lambda_{\mu_{fast}}}}\right] \frac{1}{\lambda_{14}} (1 - e^{-(t_{i} - t_{b})\lambda_{14}})e^{-t_{b}\lambda_{14}}}{\left[P_{10_{sp}}e^{-\frac{E}{\Lambda_{sp}}} + P_{10_{\mu}}e^{-\frac{E}{\Lambda_{\mu}}} + P_{10_{\mu_{fast}}}e^{-\frac{E}{\Lambda_{\mu_{fast}}}}\right] \frac{1}{\lambda_{10}} (1 - e^{-(t_{i} - t_{b})\lambda_{10}})e^{-t_{b}\lambda_{10}}}$$ (S2). N_{10} is the measured 10 Be concentration, $R_{14/10}$ is the measured 14 C/ 10 Be ratio, $P_{10\text{sp}}$, $P_{10\mu}$, and $P_{10\mu\text{fast}}$ are the 10 Be production rates for spallation, negative muons, and fast muons, respectively, with similar terms for 14 C. Λ_{sp} , Λ_{μ} -, and $\Lambda_{\mu\text{fast}}$ are the attenuation lengths of the three production pathways. λ_{10} and λ_{14} are the 10 Be and 14 C decay constants. However, the long half life of 10 Be (1.387 Myr; Chmeleff et al., 2010; Korschinek et al., 2010) relative to the length of Holocene (11,500 yr) means that <<1% of the 10 Be decays during any burial period and therefore can be ignored. Equation S1 therefore simplifies to: $$N_{10}(t_b, E) = \left[P_{10sp} e^{-E/\Lambda_{sp}} + P_{10\mu} e^{-E/\Lambda_{\mu}} + P_{10\mu_{fast}} e^{-E/\Lambda_{\mu_{fast}}} \right] (t_i - t_b) \quad (S3),$$ and similarly Equation S2 simplifies to: $$R_{\frac{14}{10}}(t_{b}, E) = \frac{\left[P_{14_{sp}}e^{-\frac{E}{\Lambda_{sp}}} + P_{14_{\mu}}e^{-\frac{E}{\Lambda_{\mu}}} + P_{14_{\mu_{fast}}}e^{-\frac{E}{\Lambda_{\mu_{fast}}}}\right] \frac{1}{\lambda_{14}} (1 - e^{-(t_{i} - t_{b})\lambda_{14}})e^{-t_{b}\lambda_{14}}}{\left[P_{10_{sp}}e^{-\frac{E}{\Lambda_{sp}}} + P_{10_{\mu}}e^{-\frac{E}{\Lambda_{\mu}}} + P_{10_{\mu_{fast}}}e^{-\frac{E}{\Lambda_{\mu_{fast}}}}\right] (t_{i} - t_{b})}$$ (S4). The erosion depths (E) for each sample can then be determined by substitution of S3 into S4. Burial durations are then determined from S3. The exposure duration (t_e) is determined based on the assumed initial exposure age (t_i) ; see main text) and is the difference between the initial exposure age and burial duration. ## **Supporting Data Tables** Table DR1. ¹⁰Be and ¹⁴C sample data. Columns are sample latitude, longitude, and elevation. Concentration of ¹⁰Be and ¹⁴C, corrected for background, equivalent apparent ¹⁰Be and ¹⁴C exposure ages, and ¹⁴C/¹⁰Be ratio. All uncertainties reported at 1σ. | Cample | Latitude | Longitude | Elevation | Thickness | Topographic | ¹⁰ Be ¹ | ¹⁴ C ¹ | ¹⁰ Be Age ² | ¹⁴ C Age ² | ¹⁴ C/ ¹⁰ Be | |--------|----------|------------|------------|-----------|-------------|-------------------------------|------------------------------|-----------------------------------|----------------------------------|-----------------------------------| | Sample | (N) | (E) | (m a.s.l.) | (cm) | Shielding | (10^4 at g^{-1}) | (10^4 at g^{-1}) | (ka) | (ka) | С/ Ве | | Rho-1 | 46.5787 | 8.3843 | 2220 | 2.24 | 0.983 | 2.81 ± 0.06 | 6.98 ± 2.01 | 1.19 ± 0.07 | 0.89 ± 0.16 | 2.51 ± 0.43 | | Rho-2 | 46.5788 | 8.3845 | 2227 | 2.17 | 0.984 | 3.55 ± 0.08 | 6.69 ± 2.42 | 1.49 ± 0.08 | 0.85 ± 0.23 | 1.91 ± 0.48 | | Rho-3 | 46.5787 | 8.3847 | 2230 | 1.84 | 0.965 | 5.10 ± 0.53 | 10.62 ± 2.17 | 2.13 ± 0.25 | 1.37 ± 0.20 | 2.1 ± 0.35 | | Rho-4 | 46.5785 | 8.3852 | 2244 | 3.04 | 0.970 | 11.21 ± 0.40 | 20.36 ± 2.25 | 4.62 ± 0.29 | 2.83 ± 0.27 | 1.82 ± 0.15 | | Rho-5 | 46.57887 | 8.38375 | 2211 | 1.05 | 0.982 | 0.25 ± 0.02 | 1.68 ± 1.30 | 0.11 ± 0.01 | 0.21 ± 0.16 | 6.63 ± 4.97 | | Rho-6 | 46.57887 | 8.38375 | 2211 | 1.97 | 0.982 | 5.99 ± 0.11 | 7.49 ± 1.24 | 2.59 ± 0.14 | 0.97 ± 0.18 | 1.25 ± 0.22 | | Rho-7 | 46.57897 | 8.38447 | 2224 | 2.40 | 0.985 | 5.48 ± 0.11 | 7.69 ± 1.24 | 2.35 ± 0.13 | 0.99 ± 0.17 | 1.4 ± 0.23 | | Rho-8 | 46.5789 | 8.38529 | 2241 | 2.64 | 0.985 | 9.36 ± 0.18 | 12.06±1.24 | 3.92 ± 0.21 | 1.58 ± 0.19 | 1.29 ± 0.13 | | Rho-9 | 46.57861 | 8.38564 | 2259 | 1.86 | 0.993 | 9.83 ± 0.19 | 13.18 ± 1.28 | 4.01 ± 0.21 | 1.69 ± 0.19 | 1.34 ± 0.13 | | Rho-10 | 46.57871 | 8.38746 | 2308 | 1.77 | 0.960 | 11.00 ± 0.21 | 15.12±1.24 | 4.46 ± 0.24 | 1.96 ± 0.20 | 1.37 ± 0.12 | | Rho-11 | 46.57854 | 8.38690 | 2294 | 2.30 | 0.960 | 13.00 ± 0.29 | 18.43 ± 1.66 | 5.33 ± 0.29 | 2.50 ± 0.22 | 1.42 ± 0.1 | ¹ Corrected for background ¹⁰Be and ¹⁴C. See Table DR3 for background measurements. ² Calculated using variable production rate due to variable geomagnetic field in the CRONUS-Earth calculator, but modified for ¹⁴C age calculation (Balco et al., 2008). Ages assume continuous exposure with no erosion. Uncertainties include analytical uncertainties only. Table DR2. ¹⁰Be and ¹⁴C sample data details. Columns are mass of Be carrier, measured ¹⁰Be/⁹Be ratio, mass of quartz digested for ¹⁰Be measurement, mass of quartz fused for ¹⁴C measurement, volume of CO₂ extracted from ¹⁴C quartz aliquot, equivalent mass of carbon, volume of diluted CO₂ after sample extraction, the fraction modern ¹⁴C measured in the diluted CO₂, number of ¹⁴C atoms measured prior to correction for ¹⁴C background, and associated ¹⁰Be and ¹⁴C blanks used to asses background. All uncertainties reported at 1σ . | | Sample | Be
Carrier
(g) | ¹⁰ Be/ ⁹ Be
(10 ⁻¹⁴) | 10Be
Sample
Mass
(g) | Sample
Mass
(g) | V _{CO2}
(10 ⁻² cc
STP) | Mass
C
(μg) | V Diluted (cc STP) | F _m
Measured | 14C
Sample ¹
(10 ⁵ at) | % ¹⁴ C
Blank
Correction | ¹⁰ Be Blank | ¹⁴ C
Blank | |---|--------|----------------------|---|-------------------------------|-----------------------|--|-------------------|--------------------|----------------------------|--|--|------------------------|--------------------------| | _ | Rho-1 | 0.2531 | 8.56±0.19 | 50.7141 | 5.0004 | 5.18±0.06 | 27.74 | 1.69±0.02 | 0.0128±0.0016 | 6.87±0.86 | 48.9 | B2-5-07 | 2009
Blanks | | | Rho-2 | 0.2527 | 10.79±0.22 | 50.7466 | 5.0081 | 4.39±0.05 | 23.50 | 1.67±0.02 | 0.0127±0.0020 | 6.71±1.04 | 50.1 | B2-5-07 | 2009
Blanks | | | Rho-3 | 0.2534 | 15.44±1.60 | 50.8163 | 5.0606 | 4.74±0.05 | 25.36 | 1.66±0.02 | 0.0167±0.0017 | 8.74±0.92 | 38.4 | B2-5-07 | 2009
Blanks | | | Rho-4 | 0.2534 | 34.53±1.23 | 51.8476 | 5.0226 | 3.77±0.04 | 20.17 | 1.63±0.02 | 0.0263±0.0018 | 13.56±0.95 | 24.8 | B2-5-07 | 2009
Blanks | | | Rho-5 | 0.1984 | 0.69 ± 0.05 | 31.1979 | 5.20460 | 3.47±0.04 | 18.56 | 1.52±0.02 | 0.0050 ± 0.0012 | 2.43±0.58 | 64.6 | Blank09Dec11 | 2010
Blanks | | | Rho-6 | 0.2009 | 23.96±0.39 | 53.2692 | 5.08510 | 3.88±0.04 | 20.76 | 1.51±0.02 | 0.0112±0.0012 | 5.35±0.59 | 29.4 | Blank09Dec11 | 2010
Blanks | | | Rho-7 | 0.1992 | 20.69±0.37 | 49.8733 | 5.13470 | 6.08±0.07 | 32.58 | 1.49±0.02 | 0.0117±0.0012 | 5.49±0.57 | 28.6 | Blank09Dec11 | 2010
Blanks | | | Rho-8 | 0.2004 | 34.64±0.56 | 49.2522 | 5.01770 | 2.14±0.02 | 11.48 | 1.43±0.02 | 0.0168±0.0012 | 7.61±0.55 | 20.6 | Blank09Dec11 | 2010
Blanks | | | Rho-9 | 0.2002 | 30.98±0.50 | 41.8802 | 5.07370 | 2.55±0.03 | 13.66 | 1.42±0.02 | 0.0183±0.0012 | 8.23±0.56 | 19.1 | Blank09Dec11 | 2010
Blanks | | | Rho-10 | 0.1999 | 42.62±0.69 | 51.2652 | 5.03760 | 2.99±0.03 | 16.01 | 1.42±0.02 | 0.0205±0.0013 | 9.16±0.58 | 17.1 | Blank09Dec11 | 2010
Blanks | | | Rho-11 | 0.2004 | 49.50±0.99 | 50.5339 | 5.07370 | 3.40±0.04 | 18.22 | 1.40±0.02 | 0.0246±0.0012 | 10.88±0.56 | 14.4 | Blank09Dec11 | 2010
Blanks | | | 1 | | | _ | | | | | | | | | | ¹ Not corrected for background. Table DR3. ¹⁴C blank data. V_{CO2} is the volume of CO₂ collected during blank extraction, Mass C is the mass of carbon extracted, V_{Diluted} is the volume of the diluted gas prior to AMS and δ^{13} C splitting, and F_m is the fraction modern 14 C value of the diluted gas. All uncertainties reported at 1σ . | Blank ID | V _{CO2} (10 ⁻² cc STP) | Mass C
(μg) | V _{Diluted} (cc STP) | F _m Measured | ¹⁴ C Blank
(10 ⁵ at) | |---------------|--|-----------------|-------------------------------|-------------------------|---| | Blank1-26-09 | 1.50 ± 0.02 | 8.01 ± 0.09 | 1.28 ± 0.01 | 0.0075 ± 0.0012 | 2.13 ± 0.68 | | Blank2-16-09 | 1.91 ± 0.02 | 10.21 ± 0.12 | 1.59 ± 0.02 | 0.0097 ± 0.0012 | 3.91 ± 0.84 | | | | | | Average | 3.36 ± 0.83 | | Blank1-18-10 | 1.73 ± 0.01 | 9.24 ± 0.08 | 2.52 ± 0.02 | 0.0035 ± 0.0002 | 1.7 ± 0.93 | | Blank2-8-10 | 1.52 ± 0.02 | 8.16 ± 0.09 | 1.47 ± 0.02 | 0.0051 ± 0.0003 | 1.44 ± 0.56 | | Blank 3-5-10 | 1.24 ± 0.01 | 6.63 ± 0.08 | 1.14 ± 0.01 | 0.0057 ± 0.0002 | 1.33 ± 0.43 | | Blank 3-29-10 | 1.78 ± 0.02 | 9.54 ± 0.11 | 1.37 ± 0.02 | 0.0059 ± 0.0002 | 1.79 ± 0.51 | | | | | | Average | 1.57 ± 0.28 | Table DR4. ¹⁰Be blank data. Mass of Be carrier, measured ¹⁰Be/⁹Be ratio, and resulting number of ¹⁰Be atoms in blank. All uncertainties reported at 1σ. | Blank ID | Be Carrier (g) | ¹⁰ Be/ ⁹ Be (10 ⁻¹⁵) | ¹⁰ Be (10 ⁴ at) | | |--------------|----------------|--|---------------------------------------|--| | B2-5-07 | 0.2524 | 1.06±1.06 | 1.77±1.79 | | | Blank09Dec11 | 0.2012 | 0.87 ± 0.14 | 1.17±0.19 | | Table DR5. ²⁶Al data. Mass of quartz digested for ²⁶Al measurement, total Al in digested quartz (note no carrier Al added to samples), measured ²⁶Al/²⁷Al ratio, ²⁶Al concentration, and resulting apparent ²⁶Al exposure age. All uncertainties reported at 1σ. | Sample | Sample
Mass
(g) | Total Al (mg) | 26 Al/ 27 Al (10^{-13}) | ²⁶ Al
(10 ⁵ at g ⁻¹) | ²⁶ Al Age
(ka) | |--------|-----------------------|---------------|---------------------------------------|---|------------------------------| | Rho-1 | 50.7141 | 2.73 ± 0.02 | 2.12 ± 0.29 | 2.55 ± 0.34 | 1.56±0.21 | | Rho-2 | 50.7466 | 3.09 ± 0.02 | 2.10 ± 0.33 | 2.85 ± 0.45 | 1.74 ± 0.27 | | Rho-3 | 50.8163 | 3.05 ± 0.04 | 2.70 ± 0.27 | 3.62 ± 0.36 | 2.19 ± 0.22 | | Rho-4 | 51.8476 | 2.89 ± 0.03 | 6.40 ± 0.45 | 7.97 ± 0.57 | 4.77 ± 0.34 | Table DR6. Calculated exposure durations, burial durations, and erosion rates. | | Exposure | Burial | Erosion | Equivalent Erosion | |----------------------|-----------------|-----------------|----------------|--| | Sample | Duration | Duration | Depth | Rate | | | (kyr) | (kyr) | (cm) | $(\mathbf{mm} \ \mathbf{yr}^{-1})^{1}$ | | Rho-1 | 9.12±1.62 | 1.88 ± 0.33 | 145±26 | 0.33±0.151 | | Rho-2 | 7.19 ± 1.85 | 3.81 ± 0.98 | 112 ± 29 | 0.25 ± 0.125 | | Rho-3 | 9.00 ± 1.54 | 2.00 ± 0.34 | 102 ± 18 | 0.23 ± 0.106 | | Rho-4 | 9.02 ± 0.84 | 1.98 ± 0.18 | 47±4 | 0.11 ± 0.046 | | Rho-5 | | | 291 ± 30^{3} | 0.66 ± 0.29^{3} | | Rho-6 | 3.87 ± 0.70 | 7.13 ± 1.28 | 31±6 | 0.07 ± 0.032 | | Rho-7 | 4.97 ± 0.84 | 6.03 ± 1.02 | 54±9 | 0.12 ± 0.056 | | Rho-8 | 4.73 ± 0.54 | 6.27 ± 0.71 | 14±2 | 0.03 ± 0.014 | | Rho-9 | 5.24 ± 0.56 | 5.76 ± 0.61 | 19±2 | 0.04 ± 0.019 | | Rho-10 | 5.66 ± 0.55 | 5.34 ± 0.52 | 14±1 | 0.03 ± 0.014 | | Rho-11 | 6.21 ± 0.52 | 4.79 ± 0.40 | 9±1 | 0.02 ± 0.009 | | Average ² | 6.49±1.96 | 4.50 ± 1.96 | | | ¹ Erosion rates calculated using the average burial duration based on all samples. ³ Calculated using ¹⁰Be concentration and mean exposure and burial duration. #### References - Anderson, R. K., Miller, G. H., Briner, J. P., Lifton, N. A., and DeVogel, S. B., 2008, A millennial perspective of Arctic warming from ¹⁴C in quartz and plants emerging from beneath ice caps: Geophys. Res. Lett., v. 35, no. L01502, p. doi: 10.1029/2007GL03057. - Balco, G., Briner, J., Finkel, R. C., Rayburn, J. A., Ridge, J. C., and Schaefer, J. M., 2009, Regional beryllium-10 production rate calibration for late-glacial northeastern North America: Quaternary Geochronology, v. 4, no. 2, p. 93-107. - Balco, G., Stone, J., Lifton, N. A., and Dunai, T. J., 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al measurements: Quaternary Geochronology, v. 3, no. 3, p. 174-195. - Chmeleff, J., Blanckenburg, F. v., Kossert, K., and Jakob, D., 2010, Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting: Nuclear Inst. and Methods in Physics Research, B, v. 268, no. 2, p. 192-199. - Dugan, B., Lifton, N., and Jull, A. J. T., 2008, New production rate estimates for in situ cosmogenic C-14: Geochim. Cosmochim. Acta, v. 72, no. 12, p. A231-A231. - Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Knie, K., and Nolte, E., 2002a, Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons: Earth and Planetary Science Letters, v. 200, p. 357-369. - Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Neumaier, S., Knie, K., Lazarev, V., and Nolte, E., 2002b, Production of selected cosmogenic radionuclides by muons: 1. Fast muons: Earth and Planetary Science Letters, v. 200, p. 345-355. - Kelly, M. A., Buoncristiani, J.-F., and Schlüchter, C., 2004, A reconstruction of the last glacial maximum (LGM) ice-surface geometry in the western Swiss Alps and ² Average is arithmetic mean and standard deviation of all samples, except for Rho-5. - contiguous Alpine regins in Italy and France: Eclogae geologicae Helvtiae, v. 97, p. 57-75. - Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Gostomski, C. L. v., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A., 2010, A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting: Nuclear Inst. and Methods in Physics Research, B, v. 268, no. 2, p. 187-191. - Lifton, N. A., Bieber, J. W., Clem, J. M., Duldig, M. L., Evenson, P., Humble, J. E., and Pyle, R., 2005, Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications: Earth and Planetary Science Letters, v. 239, p. 140-161. - Lifton, N. A., Jull, A. J. T., and Quade, J., 2001, A new extraction technique and production rate estimate for in situ cosmogenic ¹⁴C in quartz: Geochimica et Cosmochimica Acta, v. 65, no. 12, p. 1953-1969. - Miller, G. H., Briner, J. P., Lifton, N. A., and Finkel, R. C., 2006, Limited ice-sheet erosion and complex exposure histories derived from in situ cosmogenic ¹⁰Be, ²⁶Al, and ¹⁴C on Baffin Island, Arctic Canada: Quaternary Geochronology, v. 1, no. 1, p. 74-85. - Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J., 2007, Absolute calibration of ¹⁰Be AMS standards: Nuclear Instruments and Methods in Physics Research B, v. 258, p. 403-413. - Pigati, J. S., 2004, Experimental Developments and Application of Carbon-14 and in situ Cosmogenic Nuclide Dating Techniques [PhD thesis]: University of Arizona, 188 p. - Stroeven, A., van de Wal, R., and Oerlemans, J., 1989, Historic Front Variations of the Rhone Glacier: Simulation with an Ice Flow Model, *in* Oerlemans, J., ed., Glacier Fluctuations and Climatic Change: Dordrecht, Kluwer Academic Publishers. - Wallinga, J., and van de Wal, R. S. W., 1998, Sensetivity of Rhonegletscher, Switzerland, to climate change: experiments with a one-dimensional flowline model: Journal of Glaciology, v. 44, no. 147, p. 383-393.