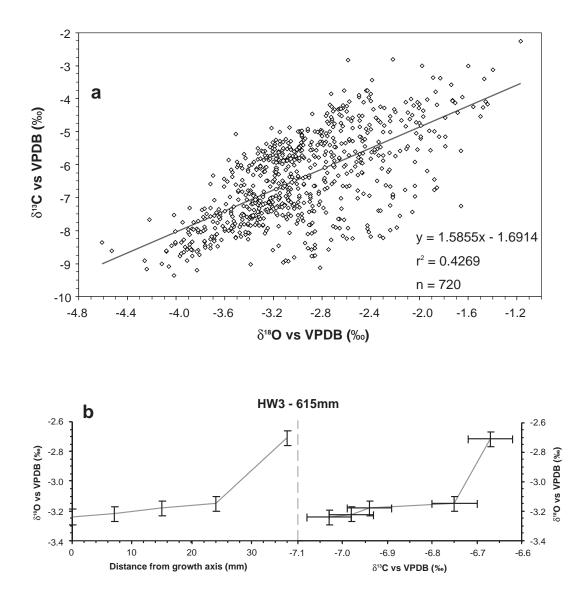
## **METHODS**

Uranium-series isotope measurements of HW3 calcite were carried out at the University of Melbourne, Australia, using a Nu-Instruments Nu-Plasma multi-collector ICP-MS. Eighteen subsample blocks (50-200 mg) were prepared following standard methods (Hellstrom, 2003). Calculated ages include a correction for minor amounts of detrital Th using an assumed initial  $^{230}$ Th/ $^{232}$ Th activity ratio of 1 ± 0.5. U and Th isotopic data, ages and errors (2 $\sigma$ ) are shown in Supplementary Table DR1.

Stable isotope ratios ( $\delta^{18}O$ ,  $\delta^{13}C$ ) were obtained by analysis of ~2 mg of powdered speleothem calcite milled from the growth axis. Isotope ratios are expressed in  $\delta$  notation, the per mil (‰) deviation from the Vienna Pee-Dee Belemnite standard. Simultaneous determination of  $\delta^{13}C$  and  $\delta^{18}O$  was performed using a Europa Geo 20-20 fitted with a Europa CAPS reaction line at the University of Waikato. Reproducibility of standard materials is 0.06 ‰ for  $\delta^{13}C$  and 0.12 ‰ for  $\delta^{18}O$ .

## **REFERENCES CITED**

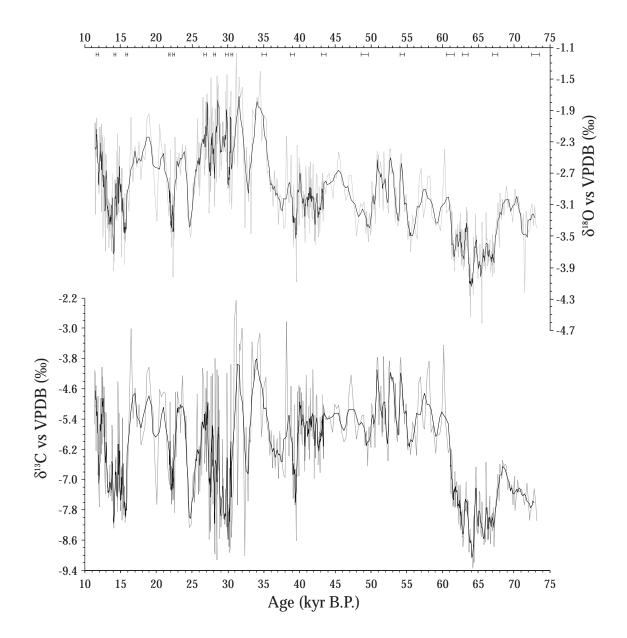
Hellstrom, J., 2003, Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS: Journal of Analytical Atomic Spectrometry, v. 18, p. 1346-1351.


|       |                  |                                      | measured                            | measured                           | uncorrected | corrected   | corrected                          |
|-------|------------------|--------------------------------------|-------------------------------------|------------------------------------|-------------|-------------|------------------------------------|
| Depth | <sup>238</sup> U | <sup>230</sup> Th/ <sup>232</sup> Th | <sup>230</sup> Th/ <sup>238</sup> U | <sup>234</sup> U/ <sup>238</sup> U | age         | age         | <sup>234</sup> U/ <sup>238</sup> U |
| (mm)  | (ng/g)           | activity ratio                       | activity ratio                      | activity ratio                     | yrs B.P.    | yrs B.P.    | activity ratio                     |
| 9     | n.d.             | 527                                  | $0.1805 \pm 0.0026$                 | 1.7518 ± 0.0051                    | 11744 ± 171 | 11724 ± 181 | 1.7772 ± 0.0052                    |
| 71    | n.d.             | 2082                                 | $0.2148 \pm 0.0017$                 | 1.7444 ± 0.0033                    | 14169 ± 114 | 14162 ± 122 | $1.7749 \pm 0.0034$                |
| 130   | n.d.             | 949                                  | $0.2390 \pm 0.0014$                 | 1.7440 ± 0.0035                    | 15872 ± 99  | 15857 ± 105 | 1.7782 ± 0.0036                    |
| 151   | 102              | 13941                                | $0.3148 \pm 0.0013$                 | 1.7103 ± 0.0044                    | 21804 ± 104 | 21806 ± 118 | 1.7557 ± 0.0045                    |
| 183   | n.d.             | 3345                                 | $0.3232 \pm 0.0013$                 | $1.7141 \pm 0.0032$                | 22403 ± 102 | 22398 ± 109 | $1.7609 \pm 0.0033$                |
| 219   | 117              | 4297                                 | 0.3677 ± 0.0018                     | 1.6567 ± 0.0035                    | 26835 ± 146 | 26830 ± 158 | $1.7086 \pm 0.0036$                |
| 264   | 113              | 7431                                 | $0.3840 \pm 0.0016$                 | 1.6578 ± 0.0036                    | 28161 ± 137 | 28157 ± 150 | $1.7125 \pm 0.0038$                |
| 295.5 | 68               | 560                                  | $0.4014 \pm 0.0021$                 | $1.6431 \pm 0.0042$                | 29913 ± 180 | 29872 ± 199 | $1.6999 \pm 0.0044$                |
| 319   | 133              | 12847                                | $0.4067 \pm 0.0016$                 | $1.6369 \pm 0.0030$                | 30494 ± 141 | 30499 ± 150 | $1.6944 \pm 0.0031$                |
| 341   | 62               | 253                                  | $0.4479 \pm 0.0025$                 | 1.5894 ± 0.0047                    | 35236 ± 238 | 35117 ± 266 | $1.6512 \pm 0.0050$                |
| 361   | 94               | 589                                  | $0.4893 \pm 0.0028$                 | 1.5912 ± 0.0034                    | 39033 ± 259 | 38979 ± 282 | $1.6602 \pm 0.0037$                |
| 447   | 54               | 742                                  | $0.5194 \pm 0.0030$                 | $1.5452 \pm 0.0051$                | 43435 ± 315 | 43387 ± 351 | $1.6165 \pm 0.0055$                |
| 452   | 69               | 1809                                 | $0.5720 \pm 0.0041$                 | 1.5363 ± 0.0040                    | 49163 ± 430 | 49143 ± 460 | $1.6165 \pm 0.0045$                |
| 466   | 75               | 278                                  | $0.6117 \pm 0.0020$                 | $1.5134 \pm 0.0028$                | 54538 ± 237 | 54386 ± 275 | $1.5990 \pm 0.0030$                |
| 489   | 87               | 296                                  | $0.6602 \pm 0.0035$                 | 1.4913 ± 0.0047                    | 61273 ± 451 | 61128 ± 504 | $1.5843 \pm 0.0052$                |
| 529   | 70               | 505                                  | $0.6751 \pm 0.0029$                 | $1.4889 \pm 0.0034$                | 63269 ± 367 | 63184 ± 415 | $1.5848 \pm 0.0037$                |
| 595   | 77               | 2052                                 | $0.6955 \pm 0.0026$                 | 1.4647 ± 0.0027                    | 67340 ± 341 | 67317 ± 378 | $1.5624 \pm 0.0030$                |
| 627   | 168              | 711                                  | 0.7186 ± 0.0035                     | 1.4265 ± 0.0037                    | 73080 ± 506 | 73018 ± 574 | $1.5246 \pm 0.0042$                |

Supplementary Table DR1: Uranium-series data for stalagmite HW3

Corrected ages use an initial 230Th/232Th atomic ratio of  $1.0 \pm 0.5$  following equation 1 in Hellstrom (2006), with fully propagated uncertainty. Decay constants used are from Cheng et al. (2000). Notation: yrs B.P. = years before present, where present is 2007 CE; n.d. = not determined

Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmerom, Y., 2000, The halflives of uranium-234 and thorium-230: Chemical Geology, v. 169, p. 6-25.


Hellstrom, J., 2006, U-Th dating of speleothems with high initial <sup>230</sup>Th using stratigraphical constraint: Quaternary Geochronology, v. 1, p. 289-295.



**Supplementary Figure DR1a:**  $\delta^{13}$ C versus  $\delta^{18}$ O along the HW3 growth axis. While the spread of data yields a significant positive correlation (r<sup>2</sup> = 0.427), thelinear trend has a slope of ~1.6. Under non-equilibrium conditions a slope of ~3 would be anticipated (Hendy, 1971). We therefore have greater confidence that the observed covariance is a function of a common environmental driver and thus the HW3 isotope profiles are reliable palaeoclimate archives.

**Supplementary Figure DR1b:** Along-layer isotope profile from stalagmite HW3. With increasing distance from the growth axis there is negligible change in isotopic ratio indicating that HW3 calcite was likely deposited in isotopic equilibrium with the drip water.

Hendy, C. H., 1971, The isotopic geochemistry of speleothems – I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators: Geochimica et Cosmochimica Acta, v. 35, p. 801-824.



**Supplementary Figure DR2:** Raw (gray lines)stable isotope data and 5-point running means (black lines) measured in calcite milled from Hollywood Cave speleothem HW3.