GSA DATA REPOSITORY 2011143

Otero et al.

Table DR1. Location, systematic attribution, sample number, sample type and oxygen isotope compositions of the fish fossil samples. (d) is for diagenesis suspected

Location	Taxon	Environment	Sample	Sample	d18O (PO4)				
Toros-Menalla : 7 Ma									
TM 82	Hydrocynus	marginal waters	19-M82-h	4 teeth	20,19				
TM 90	Polypterus	Swamp	30-M90-p	4 scales	20,90				
TM 254	Hydrocynus	open waters	31-M90-p 36-M254-h 37-M254-b	5 teeth	19,23 16,40 18.06				
TM 337	Hydrocynus Hydrocynus Hydrocynus Tetraodon	marginal waters marginal waters	40-M337-h 51-M337-h 49-M337-t	5 teeth 33 teeth	18,29 18,58 19,36				
TM 266	Hydrocynus Hydrocynus Hydrocynus Hydrocynus Hydrocynus Hydrocynus Hydrocynus Tetraodon Tetraodon	open waters open waters open waters open waters open waters open waters open waters open waters open waters open waters	11-M266-h 12-M266-h 39-M266-h 41-M266-h 42-M266-h 43-M266-h 43-M266-h 48-266-t 50-266-t	n teeth n teeth 6 teeth 33 teeth 33 teeth 33 teeth 33 teeth 33 teeth 38 plates 26 plates	17,10 18,05 18,12 16,08 16,62 16,90 17,06 17,10 18,44				
TM 267	Hydrocynus Hydrocynus	open waters	24-M267-h 25-M267-h	5 teeth 8 teeth	15,86 16,43				
Kossom Bougoudi : 5.5–5 Ma									
KB 03 KB 07	Hydrocynus Hydrocynus Hydrocynus Hydrocynus Hydrocynus Hydrocynus	open waters open waters open waters open waters open waters open waters	7-B3-h 8-B3-h 44-B3-h 45-B3-h 53-B3-h 26-B7-h 32-B7-h	n teeth n teeth 33 teeth 33 teeth 33 teeth 5 teeth 3 teeth	18,94 19,90 18,67 19,03 19,14 19,74 17,63				
Kolle : 5–4 Ma									
KL 02	Hydrocynus Hydrocynus Hydrocynus	open waters open waters open waters	13-L2-h 14-L2-h 54-L2-h	n teeth n teeth 33 teeth	18,97 20,24 19,16				
KL 02 (chann	el) Hydrocynus Polypterus	marginal waters marginal waters	15-L2c-h 29-L2c-p	n teeth 4 scales	18,21 (d) 18,20 (d)				
Koro-Toro : 3.5–3 Ma									
KT 13 KT 12	Hydrocynus Hydrocynus Hydrocynus Hydrocynus Hydrocynus Tetraodon	open waters open waters open waters open waters open waters open waters	9-T13-h 10-T13-h 16-T12-h 46-T12-h 56-T12-h 47-T12-t 55-T12-t	n teeth n teeth 33 teeth 33 teeth 30 plates 23 plates	19,57 20,05 19,76 19,58 19,86 18,99 20,14				
	1000000	opon waters	00-112-1	20 plates	20,14				

Appendix DR1. Sample preparation

Teeth (jaw teeth of *Hydrocynus*), tooth plates (beak elements of *Tetraodon*) and ganoid scales (*Polypterus*) were cleaned by ultrasonic cleaning in deionized water. Depending on the concerned fish, bulk analyses were performed on 10 to 33 teeth, on about 20 tooth plates from one or two beak elements, or on 5 to 10 scales. Well-preserved enamel was manually selected on each tooth by hand-picking following rough crushing in an agate mortar.

Appendix DR2. Oxygen isotope analysis of tooth enamel phosphate

Measurements of oxygen isotope ratios of apatite consist in isolating PO_4^{3-} using acid dissolution and anionexchange resin, according to a protocol derived from the original method (Crowson et al., 1991) and slightly modified (Lécuyer et al., 1993). Silver phosphate was quantitatively precipitated in a thermostatic bath set at a temperature of 70°C. After filtration, washing with double deionised water, and drying at 50°C, 15 mg of Ag₃PO₄ were mixed with 0.8 mg of pure powder graphite. ¹⁸O/¹⁶O ratios were measured by reducing silver phosphate to CO₂ using graphite reagent (O'Neil et al., 1994; Lécuyer et al., 1998). Samples were then weighed into tin reaction capsules and loaded into quartz tubes and degassed for 30 minutes at 80°C under vacuum. Each sample was heated at 1100°C for 1 minute to promote the redox reaction. The CO₂ produced was directly trapped in liquid nitrogen to avoid any kind of isotopic reaction with quartz at high temperature. CO₂ was then analyzed with a GV PrismTM mass spectrometer at the Laboratory UMR CNRS 5125 'PEPS', University Lyon 1. Isotopic compositions are quoted in the standard δ notation relative to V-SMOW. Silver phosphate precipitated from standard NBS120c (natural Miocene phosphorite from Florida) was repeatedly analyzed ($\delta^{18}O = 21.67 \pm 0.18$; n = 15) along with the silver phosphate samples derived from the Neogene Chadian fish remains.

Appendix DR3. 818O and 8D composition of six water samples collected in February 2006 in Chad

Aliquots of 200 μ l of water were automatically equilibrated at 40°C with CO₂ and H₂ and analyzed using a MultiPrepTM system on line with a GVI IsoPrimeTM dual inlet IRMS. Internal reproducibilities were typically ±0.03‰ for δ^{18} O and ±0.5‰ for δ D. External reproducibilities of 18 O/ 16 O and D/H measurements were established at about ±0.1‰ and ±1‰, respectively, by scaling raw data to the "true" isotopic ratios of SMOW, SLAP and GISP international standards.

The measurements are presented below in a table giving the name sample and their location, and in the diagram $\delta D=f(\delta^{18}O)$ showing the samples (blue spot), the regression line (blue line) and also the Meteoric Water Line (MWL) in red. Note the Deuterium and ¹⁸O enrichment of the residual water collected in a drying pond (Guileba, TCH_W5)

Sample	Location	δ ¹⁸ Ο	SD	δD	SD		
		‰		‰			
		SMOW		SMOW			
TCH_W1	well ≈15°LatN (desert, Salal)	4.77	0.05	16.1	0.03		
TCH_W2	well ≈16°LatN (desert, TM)	-2.46	0.05	-33.6	2.0		
TCH_W3	well ≈16°LatN (desert, TM)	-0.26	0.04	-29.7	1.0		
TCH_W4	well ≈16°LatN (desert, TM)	-2.83	0.06	-37.7	0.5		
TCH_W5	pound ≈13.3°LatN (Guileba)	26.14	0.08	100.6	1.3		
TCH_W6	well ≈13.3°LatN (Guileba)	-7.69	0.01	-54.4	2.7		

Note: The wells in Salal and Guileba are those of the village; the wells in the desert were dug by OO and MHT (about 2 m deep) close to three different sites in the Toros-Menalla area (TM).

Appendix DR4. Diagenesis

Isotopic exchange under inorganic conditions has little effects upon the oxygen isotope composition of phosphate, even at geological scale (Kolodny et al., 1983; Lécuyer et al., 1999). Well-preserved and unbroken teeth were preferentially selected to isolate tooth enamel that is considered as the most robust biomineral for preserving pristine oxygen isotope ratios. Although no method is available to demonstrate definitely whether the oxygen isotope composition of tooth phosphate was affected by diagenetic processes, several arguments are in favor of the preservation of the primary isotopic record. Based on the clustered phosphate chemical yields close to 40% measured during the wet chemistry procedure, the original stoechiometry of tooth enamel was preserved. A strong argument supporting the preservation of the oxygen isotopic record is provided by the relation observed between the size of water bodies and the mean δ^{18} O values of fish teeth that lived in the contemporaneous late Miocene sites from Toros-Menalla. If early diagenetic processes had occurred, they would have most likely homogenised $\delta^{18}O_p$ values of all vertebrate remains whatever the physiology and ecology of the corresponding taxa. It appears on the basis of our data set that diagenetic effects - if they occurred - were weak enough to preclude the resetting of the original oxygen isotope compositions of fossil fishes. However, two samples from a same peculiar horizon in KL2 (Otero et al., 2009) were excluded from the dataset because they do not match any of these criteria (Table DR1).

Bibliography

- Crowson, R.A., Showers, W.J., Wright, E.K., and Hoering, T.C. 1991, A method for preparation of phosphate samples for oxygen analysis: Analytical Chemistry, v. 63, p. 2397-2400.
- Kolodny, Y., Luz, B., Navon, O., 1983, Oxygene isotopes variations in phosphate of biogenic apatites: I. Fish bone apatite, rechecking the rules of the game Ethiopia: Earth and Planetary Science Letter, v. 64, p. 398-404.
- Lécuyer, C., Grandjean, P., and Sheppard, S.M.F., 1999, Oxygen isotope exchange between dissolved phosphate and water at temperatures <135°C: inorganic versus biological fractionations: Geochimica Cosmochimica Acta, v. 63, p. 855-862.
- Lécuyer C, Grandjean, P., Barrat, J.A., Nolvak, J., Emig, C. Paris, F., and Robardet, M., 1998, δ¹⁸O and REE contents of phosphatic brachiopods: a comparison between modern and lower Paleozoic populations: Geochimica and Cosmochimica Acta, v. 62, p. 2429-2436.
- Lécuyer, C., Grandjean, P., O'Neil, J.R., Capetta, H., and Martineau, F., 1993, Thermal excursions in the ocean at Cretaceous-Tertiary boundary (northern Marocco): δ¹⁸O record of phosphatic fish debris: Palaeogeography Palaeoclimatology Palaeoecology, v. 126, p. 235-243.
- O'Neil, J.R., Roe, L.J., Reinhard, E., and Blake, R.E., 1994, A rapid and precise method of oxygen isotope analysis of biogenic phosphate: Israel Journal of Earth Science, v. 43, p. 203-212.
- Otero, O., Pinton, A., Mackaye H.T., Likius, A., Vignaud, P., and Brunet, M., 2009, First description of a Pliocene ichthyofauna from Central Africa (site KL2, Kolle area, Eastern Djurab, Chad): what do we learn?: African Journal of Earth Science, v. 54, p. 62-74.