DR2011137 S. Bose et al.

1

Appendix

2 Sample Preparation and Analytical Method

3 For zircon U-Pb dating by ion microprobe, samples were crushed, sieved, and concentrated by wet settling and magnetic separation, followed by hand picking under a binocular microscope. 4 5 Four polished grain mounts were prepared by placing zircon grains in epoxy along with 6 fragments of reference zircon FC1 (1099 Ma; Paces and Miller, 1993), polished to expose grain 7 centers, cleaned to eliminate surface contamination by common lead, and coated with 100 8 Angstroms of high-purity gold. Grains were imaged by cathodoluminescence (CL) and electron 9 backscattering (BSE) with a JEOL JSM–5900LV Scanning Electron Microscope (SEM) 10 equipped with a Gatan MiniCL detector, at the National Institute of Polar Research (NIPR), 11 Tokyo. Spots on the four mounts were analysed in separately calibrated sessions by Sensitive 12 High-Resolution Ion Microprobe (SHRIMP-II) at NIPR, using a primary O_2^- ion beam with a cuurent of 5-11Na on the mount surface to produce a 25-30 µm long, flat-floored oval pit. 13 14 Secondary ionisation was measured on a single electron multiplier on mass stations 196 (Zr₂O) through to 254 (UO), with a mass resolution of >5000 for $^{238}U^{16}O$ and a sensitivity on ^{206}Pb of 15 16 17-21 cps per ppm per nA of primary current. Mass stations were measured through 7 cycles (6 for mount 4), including count times of 7 or 10s per cycle for ²⁰⁴Pb, background (at 204.04amu) 17 and ²⁰⁶Pb, and 15 or 20s for ²⁰⁷Pb. Reduction of raw data for standards and samples was 18 19 performed using the SQUID v.1.12a (Ludwig 2001), and Isoplot v.3.6 (Ludwig 2008) add-ins for 20 Microsoft Excel 2003. Abundance of U was calibrated against zircon standard SL13 (238 ppm), 21 provided by the Australian National University. In each session, U-Pb isotopic ratios were calibrated against 29-34 measurements of FC1. Robust means of ²⁰⁷Pb/²⁰⁶Pb ages were within 2 22 sigma error of the calibration age of 1099Ma. Two sigma errors on the mean of U-Pb calibration 23

DR2011137

1	ratios were 0.26, 0.40, 0.31, and 0.18% for mounts 1 through 4, respectively. These are not
2	needed for age calculations in each mount, but are provided here if data need to be combined
3	with results elsewhere. Spot-to-spot errors on the standard were added in quadrature to errors on
4	pooled ages. Corrections for common Pb on U-Pb ratios and ages for were done with common
5	Pb estimated from ²⁰⁴ Pb counts and the Stacey and Kramers (1975) common Pb model for the
6	approximate U-Pb age for each analysis. These include Concordia ages, which take into account
7	both equivalence of data and discordance between mean ²⁰⁶ Pb/ ²³⁸ U and ²⁰⁷ Pb/ ²⁰⁶ Pb ages (Ludwig,
8	2003). Where appropriate, means of pooled 207 Pb/ 206 Pb ages or concordia intercept ages of
9	Model 2 linear regressions on Tera-Wasserburg plots were used instead. Individual ratios and
10	ages are quoted at one sigma and plotted at two sigma, whereas pooled ages are quoted at 95%
11	confidence.
17	
12	
12	References cited
12 13 14	References cited Ludwig, K.R., 2001, SQUID: A user's manual: Berkeley Geochronology Center, Special
12 13 14 15	References cited Ludwig, K.R., 2001, SQUID: A user's manual: Berkeley Geochronology Center, Special Publication 2, 22 p.
12 13 14 15 16	References cited Ludwig, K.R., 2001, SQUID: A user's manual: Berkeley Geochronology Center, Special Publication 2, 22 p. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A geochronological toolkit for Microsoft
12 13 14 15 16 17	References cited Ludwig, K.R., 2001, SQUID: A user's manual: Berkeley Geochronology Center, Special Publication 2, 22 p. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication 4, 77 pp.
12 13 14 15 16 17 18	 References cited Ludwig, K.R., 2001, SQUID: A user's manual: Berkeley Geochronology Center, Special Publication 2, 22 p. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication 4, 77 pp. Paces, J.B. and Miller, J.D. Jr., 1993. Precise U-Pb ages of Duluth Complex and related mafic
12 13 14 15 16 17 18 19	 References cited Ludwig, K.R., 2001, SQUID: A user's manual: Berkeley Geochronology Center, Special Publication 2, 22 p. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication 4, 77 pp. Paces, J.B. and Miller, J.D. Jr., 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic,
12 13 14 15 16 17 18 19 20	 References cited Ludwig, K.R., 2001, SQUID: A user's manual: Berkeley Geochronology Center, Special Publication 2, 22 p. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication 4, 77 pp. Paces, J.B. and Miller, J.D. Jr., 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectono-magmatic processes associated with the 1.1 Ga Mid-continent
12 13 14 15 16 17 18 19 20 21	 References cited Ludwig, K.R., 2001, SQUID: A user's manual: Berkeley Geochronology Center, Special Publication 2, 22 p. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication 4, 77 pp. Paces, J.B. and Miller, J.D. Jr., 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectono-magmatic processes associated with the 1.1 Ga Mid-continent Rift System: Journal of Geophysical Research, v. 98, p. 13997-14013.
12 13 14 15 16 17 18 19 20 21 22	References cited Ludwig, K.R., 2001, SQUID: A user's manual: Berkeley Geochronology Center, Special Publication 2, 22 p. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication 4, 77 pp. Paces, J.B. and Miller, J.D. Jr., 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectono-magmatic processes associated with the 1.1 Ga Mid-continent Rift System: Journal of Geophysical Research, v. 98, p. 13997-14013. Stacey, J.C. and Kramers, J., 1975, Approximation of terrestrial lead isotope evolution by a two-

								Radiogenic	ratios	(²⁰⁴ Pb corre	cted)		Apparent ages (Ma)					
		U	Th		²⁰⁶ Pb*	23811/206	1.0/	207 ph /206 ph	1.0/	207 nh /235	1.0/	206 0 238	1.0/	206 ph /238	1σ	207 Dh /206 Dh	1σ	%
Spot	²⁰⁶ Pb _c %	(ppm)	(ppm)	Th/U	(ppm)	U/ PD	±%	P0/ P0	±%	PD/ U	±%	PD/ U	±%	PD/ U	error	PD/ PD	error	Disc
Sample	e EG-Kdp	<u>01</u>																
Overgi	rowth dor	nain																
11.1	0.00	2536	70	0.03	632	3.450	1.01	0.099	0.20	3.974	1.03	0.290	1.01	1641	15	1614	4	-2
Oscilla	tory/plan	ar-zone	d domair	ר														
1.1	0.04	1378	22	0.02	354	3.342	1.04	0.104	0.27	4.285	1.07	0.299	1.04	1687	15	1695	5	0
2.1	0.03	1568	169	0.11	371	3.631	1.23	0.101	0.26	3.817	1.26	0.275	1.23	1568	17	1633	5	4
3.1	0.18	1223	536	0.45	319	3.295	0.94	0.106	0.31	4.436	0.99	0.303	0.94	1708	14	1732	6	1
5.1	0.05	231	104	0.47	62	3.201	1.33	0.108	0.73	4.663	1.52	0.312	1.33	1753	20	1770	13	1
6.1	0.02	866	341	0.41	229	3.247	1.01	0.108	0.33	4.577	1.06	0.308	1.01	1731	15	1762	6	2
7.1	0.01	1353	422	0.32	369	3.148	0.93	0.108	0.26	4.722	0.96	0.318	0.93	1778	14	1763	5	-1
10.1	0.03	371	125	0.35	87	3.664	1.32	0.103	0.82	3.866	1.55	0.273	1.32	1556	18	1674	15	8
12.1	0.01	1726	715	0.43	480	3.087	1.02	0.107	0.22	4.798	1.04	0.324	1.02	1809	16	1756	4	-3
13.1	0.01	983	283	0.30	272	3.111	0.94	0.108	0.36	4.767	1.01	0.321	0.94	1797	15	1759	7	-2
14.1	0.05	492	213	0.45	133	3.178	1.14	0.107	0.48	4.646	1.24	0.315	1.14	1764	18	1751	9	-1
15.1	0.02	1108	331	0.31	303	3.142	1.14	0.108	0.44	4.718	1.22	0.318	1.14	1781	18	1758	8	-1
16.1	0.04	699	10	0.01	183	3.275	0.95	0.105	0.54	4.404	1.09	0.305	0.95	1718	14	1707	10	-1
17.1	0.04	822	884	1.11	228	3.105	0.95	0.102	0.38	4.527	1.02	0.322	0.95	1800	15	1660	7	-8
18.1	0.24	104	69	0.69	27	3.263	1.13	0.105	1.12	4.456	1.59	0.306	1.13	1723	17	1723	21	0
19.1	0.02	2058	164	0.08	560	3.159	0.92	0.105	0.23	4.592	0.95	0.317	0.92	1773	14	1718	4	-3
Sample	e EG-Kdr	04																
Bright-	and mod	lerate-C	L domai	n														
4.1	0.21	115	173	1.56	28	3.482	0.71	0.099	1.16	3.901	1.36	0.287	0.71	1627	10	1596	22	-2
6.1	0.42	177	173	1.01	44	3.437	0.66	0.098	1.01	3.921	1.21	0.291	0.66	1646	10	1581	19	-4
8.1	0.28	102	152	1.53	25	3.487	0.75	0.098	1.25	3.865	1.46	0.287	0.75	1625	11	1581	23	-3
9.1	0.05	206	154	0.77	50	3.518	0.60	0.099	0.70	3.882	0.92	0.284	0.60	1613	9	1606	13	0
11.1	0.12	283	288	1.05	70	3.478	0.59	0.099	0.63	3.940	0.86	0.288	0.59	1629	8	1612	12	-1
15.1	0.03	254	160	0.65	63	3.481	0.59	0.099	0.66	3.937	0.89	0.287	0.59	1628	9	1613	12	-1
17.1	-0.13	104	153	1.51	27	3.359	0.89	0.101	1.30	4.134	1.58	0.298	0.89	1680	13	1637	24	-3
19.1	0.06	234	130	0.57	57	3.534	0.59	0.098	0.71	3.820	0.93	0.283	0.59	1606	8	1585	13	-1
29.1	0.02	133	160	1.24	33	3.488	0.69	0.099	0.85	3.895	1.10	0.287	0.69	1625	10	1597	16	-2
Dark-C	CL domaii	ר																
3.1	-0.01	876	98	0.12	216	3.481	0.45	0.099	0.32	3.939	0.55	0.287	0.45	1628	6	1614	6	-1
5.1	0.02	2706	411	0.16	675	3.445	0.41	0.101	0.19	4.027	0.45	0.290	0.41	1643	6	1635	3	0
13.1	0.00	1178	162	0.14	289	3.499	0.44	0.100	0.27	3.932	0.52	0.286	0.44	1621	6	1620	5	0
14.1	0.10	888	128	0.15	220	3.469	0.46	0.100	0.66	3.961	0.81	0.288	0.46	1633	7	1618	12	-1
16.1	-0.01	1038	200	0.20	255	3.490	0.46	0.100	0.38	3.945	0.60	0.287	0.46	1624	7	1621	7	0
18.1	0.00	1124	215	0.20	281	3.439	0.46	0.099	0.37	3.990	0.59	0.291	0.46	1646	7	1615	7	-2
20.1	0.02	1367	194	0.15	335	3.506	0.44	0.100	0.27	3.922	0.52	0.285	0.44	1617	6	1619	5	0
21.1	0.00	1443	221	0.16	363	3.419	0.42	0.101	0.27	4.054	0.50	0.293	0.42	1654	6	1633	5	-1
22.1	0.01	1920	213	0.11	481	3.432	0.42	0.099	0.22	3.996	0.47	0.291	0.42	1648	6	1614	4	-2
23.1	-0.01	1100	150	0.14	274	3.448	0.43	0.100	0.29	3.981	0.52	0.290	0.43	1642	6	1616	5	-2
25.1	0.00	2090	385	0.19	530	3.386	0.42	0.100	0.21	4.055	0.47	0.295	0.42	1668	6	1617	4	-3
26.1	0.01	1282	155	0.13	319	3.452	0.44	0.099	0.27	3.973	0.52	0.290	0.44	1640	6	1614	5	-2
27.1	0.00	1387	285	0.21	307	3.878	0.74	0.096	0.59	3.425	0.95	0.258	0.74	1479	10	1554	11	5
Inherit	ed domai	n																5
10.1	0.01	2406	940	0.40	683	3.029	0.41	0.106	0.27	4.847	0.49	0.330	0.41	1839	7	1740	5	-5
12.1	0.00	2281	27	0.01	621	3.154	0.42	0.107	0.68	4.693	0.80	0.317	0.42	1775	. 7	1755	12	-1
28.1	0.00	1166	182	0.16	303	3.301	0.45	0.104	1.22	4.332	1.30	0.303	0.45	1706	7	1692	23	-1
Note	Errore (2σ in th		foronc		calibration		26% for mou	nt 1 /s	amples EG	e ChQ	nd EG_(1a) (31% f	or mount 2 (sa	mnles	EG-10 EG-k	(dn1) (1/0%

TABLE 2. ZIRCON SENSITIVE HIGH-RESOLUTION ION MICROPROBE ANALYSES AND APPARENT AGES FROM SAMPLES OF DOMAIN 1A FASTERN GHATS BELT

Note: Errors (20) in the FC1 reference zircon calibration were 0.26% for mount 1 (samples EG-9d2 and EG-4a), 0.31% for mount 2 (samples EG-4g, EG-Kdp1), 0.40% for mount 3 (sample EG-SS11), and 0.18% for mount 4 (samples EG-San3A, EG-SM4, EG-An3, EG-Kdp4). Uncertainties quoted for individual spot analyses are at the 1 σ level. Errors in the FC1 reference zircon calibration are not included in the above errors but are required when comparing data from different mounts. ²⁰⁶Pb_c% denotes the percentage of nonradiogenic ²⁰⁶Pb that is common Pb. ²⁰⁶Pb^{*} denotes quantity of radiogenic Pb. Correction for common Pb for the U/Pb data has been made using the measured ²⁰⁴Pb.

						Radiogenic ratios (²⁰⁴ Pb corrected)								Apparent ages (Ma)				_
	000		Th		²⁰⁶ Pb*	000 000		007 000		007 005		000 000		000 000	1σ	007 000	1σ	-
Spot	²⁰⁶ Pb _c	U (ppm)	(ppm)	Th/U	(ppm)	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²³⁵ U	±%	²⁰⁶ Pb/ ²³⁸ U	±%	²⁰⁶ Pb/ ²³⁸ U	error	²⁰⁷ Pb/ ²⁰⁶ Pb	error	% Disc
Sample	EG-9d2																	
Patchy o	lomain																	
2.1	0.01	. 2497	242	0.10	347	6.177	0.99	0.077	1.30	1.717	1.60	0.162	0.99	967	9	1119	25	16
Oscillato	ory-zoned doma	ain	o	- -	100											1000		
2.2	0.08	468	315	0.70	129	3.118	2.20	0.110	2.80	4.880	3.60	0.321	2.20	1793	34	1806	51	1
3.1	_	420	301	0.74	113	3.201	2.20	0.103	2.50	4.440	3.30	0.312	2.20	1753	34	1680	46	-4
4.1	0.14	344	404	1.21	87	3.389	0.72	0.100	0.55	4.049	0.91	0.295	0.72	1667	11	1615	10	-3
4.2	0.11	194	157	0.84	51	3.283	2.80	0.107	0.00	4.480	7.20	0.305	2.80	1714	43	1745	122	2
1.1	-	204	239	0.97	04	3.411	1.20	0.104	1.00	4.195	2.00	0.293	1.20	1007	10	1093	30	2
0.1	0.03	300	1/1	0.40	220	3.320	0.62	0.100	0.71	4.100	1.10	0.301	0.62	1095	12	1020	10	-4
9.2	0.01	1009	1003	1.15	339	4.200	2.60	0.092	0.55	2.900	2 70	0.234	0.09	1304	0	1405	10	0
10.1	0.05	023	130	0.00	40 252	3.170	0.88	0.107	2 70	4.040	2 00	0.313	0.88	1705	14	1744	14	-1
10.2	0.00	923	130	0.15	202	3.147	1 20	0.110	2.70	4.000	2.90	0.310	0.00	1779	14	1/91	49	I F
1/1	-	104	120	0.72	43	3.090	2 70	0.100	3.00	3.731	1.00	0.271	2.70	1540	10	1021	20	5
14.1	_	962	105	0.47	20	3 682	1 20	0.100	3 20	3 660	3.40	0.302	1 20	1700	16	1581	50	
14.2	0.01	1419	706	0.11	224	3.002	0.73	0.090	0.59	3 3 3 3 3	0.03	0.272	0.73	1/62	10	1501	11	2
ID.I Inhoritor	0.01	1410	790	0.50	510	5.920	0.75	0.095	0.50	5.555	0.95	0.255	0.75	1402	10	1527		4
1 1	0.01	450	74	0 17	140	2 764	2 30	0 1 1 5	2 10	5 750	3 10	0 362	2 30	1001	30	1883	30	_5
Sample	EG-9911	430	/4	0.17	140	2.704	2.50	0.115	2.10	5.750	5.10	0.002	2.50	1331	55	1005	55	-5
Overaro	wth domain																	
3.1	0.00	856	172	0.21	116	6 312	0.9	0 070	0.6	1 535	11	0 158	0.9	948	8	936	13	_1
Q 1	0.00	300	119	0.41	30	6.632	0.0	0.069	2.0	1 4 3 3	22	0.150	0.0	905	7	897	41	_1
10 1	0.00	255	40	0.41	31	7 003	11	0.000	1.3	1.361	1.8	0.101	11	860	ģ	903	27	5
15.1	0.00	688	50	0.08	97	6.089	0.9	0.000	0.7	1 610	1.0	0 164	0.9	980	8	961	14	-2
21.1	0.00	710	32	0.00	99	6 135	1.0	0.071	0.7	1.571	1.2	0.164	1.0	973	9	925	15	-5
25.1	0.00	587	53	0.00	80	6 289	1.0	0.072	0.7	1.576	2.0	0 159	1.0	951	17	982	15	3
Oscillato	rv/planar-zone	d domain	00	0.00	00	0.200	1.0	0.072	0.1	1.070	2.0	0.100	1.0	001		002	10	Ŭ
4 1	0.02	499	275	0 57	137	3 126	1 12	0 101	0.81	4 456	1 38	0 320	1 12	1789	18	1643	15	-8
7.1	0.03	627	221	0.36	136	3,949	3.27	0.099	3.69	3.463	4.93	0.253	3.27	1455	43	1609	69	11
8.1	0.02	646	192	0.31	175	3.165	1.12	0.103	0.92	4.494	1.45	0.316	1.12	1770	17	1682	17	-5
11.1	0.02	1395	359	0.27	310	3.868	2.62	0.098	2.04	3.486	3.32	0.259	2.62	1482	35	1583	38	7
14.1	0.00	1103	250	0.23	316	2,994	2.24	0.106	3.28	4.904	3.98	0.334	2.24	1858	36	1740	60	-6
17.1	0.01	522	220	0.44	128	3.509	5.53	0.101	2.72	3.974	6.16	0.285	5.53	1616	79	1645	50	2
19.1	0.00	347	212	0.63	95	3.153	1.10	0.105	0.57	4.581	1.24	0.317	1.10	1776	17	1710	10	-4
20.1	0.04	745	182	0.25	186	3.436	2.10	0.102	2.04	4.099	2.93	0.291	2.10	1647	31	1663	38	1
22.1	-0.01	453	176	0.40	90	4.305	1.58	0.096	4.74	3.061	4.99	0.232	1.58	1347	19	1539	89	14
24.1	0.06	417	271	0.67	76	4.727	3.45	0.094	3.02	2.732	4.58	0.212	3.45	1237	39	1501	57	21
29.1	0.00	400	145	0.37	100	3.454	1.35	0.099	0.58	3.953	1.47	0.290	1.35	1639	20	1606	11	-2
30.1	-0.02	208	181	0.90	50	3.551	1.50	0.104	2.34	4.028	2.79	0.282	1.50	1600	21	1692	43	6
30.2	0.00	802	351	0.45	223	3.086	1.39	0.105	1.69	4.678	2.19	0.324	1.39	1809	22	1709	31	-6
Sample	<u>EG-4a</u>																	
Overgro	wth and neobla	stic grain d	lomain															
2.1	-0.01	726	60	0.09	99.3	6.281	0.4	0.071	0.6	1.556	0.7	0.159	0.4	952	4	954	11	0
3.1	0.00	412	94	0.23	56.5	6.268	0.5	0.070	0.5	1.529	0.7	0.160	0.5	954	4	914	10	-4
4.1	0.01	386	84	0.22	52.4	6.329	0.5	0.070	1.0	1.523	1.1	0.158	0.5	946	4	926	20	-2
5.1	-0.02	366	82	0.23	48.4	6.498	0.5	0.070	1.2	1.482	1.3	3 0.154	0.5	923	4	924	25	0
6.1	0.00	358	86	0.25	49.8	6.172	0.5	0.072	0.6	1.599	0.8	3 0.162	0.5	968	4	974	12	1
7.1	-0.02	760	64	0.09	104.6	6.246	0.4	0.070	0.4	1.556	0.6	6 0.160	0.4	957	4	942	8	-2
7.2	-0.01	786	66	0.09	101.5	6.656	0.4	0.071	0.4	1.462	0.6	o 0.150	0.4	902	4	945	9	5
8.2	-0.02	379	96	0.26	48.9	6.655	0.6	0.070	1.9	1.442	2.0	0.150	0.6	902	5	917	38	2
9.2	0.03	446	88	0.20	57.0	6.730	0.5	0.069	0.5	1.411	0.7	0.149	0.5	893	4	894	11	0

TABLE 3. ZIRCON SENSITIVE HIGH-RESOLUTION ION MICROPROBE ANALYSES AND APPARENT AGES FROM SAMPLES OF DOMAIN 2, EASTERN GHATS BELT

10.1	-0.01	401	94	0.24	58.0	5.947	0.5	0.073	0.5	1.694	0.7	0.168	0.5	1002	4	1016	11	1
10.2	0.07	442	102	0.24	59	6.434	0.8	0.069	0.9	1.478	1.2	0.155	0.8	931	7	898	19	-4
12.1	-0.04	196	86	0.45	25.3	6.640	0.8	0.069	0.8	1.443	1.1	0.151	0.8	904	7	913	16	1
12.2	-0.04	506	57	0.12	61.9	7.015	0.5	0.069	0.6	1.365	0.8	0.143	0.5	859	4	912	13	6
13.1	-0.02	369	86	0.24	51.1	6.202	0.7	0.071	4.5	1.579	4.5	0.161	0.7	964	6	959	92	-1
13.2	0.01	358	85	0.24	48	6.362	1.2	0.071	1.1	1.549	1.6	0.157	1.2	941	10	971	21	3
15.1	0.04	346	79	0.24	48.2	6.179	0.7	0.072	0.6	1.597	1.0	0.162	0.7	967	7	973	13	1
15.3	0.07	337	79	0.24	43.0	6.740	0.7	0.073	2.1	1.502	2.2	0.148	0.7	892	6	1025	42	15
16.1	0.03	546	76	0.14	70.4	6.659	0.4	0.069	0.5	1.431	0.7	0.150	0.4	902	4	902	10	0
17.1	-0.01	380	86	0.23	50.7	6.435	0.9	0.073	0.7	1.570	1.2	0.155	0.9	931	8	1021	15	10
18.1	-0.06	334	90	0.28	42.8	6.693	0.5	0.070	0.6	1.452	0.8	0.149	0.5	898	4	943	13	5
19.2	0.09	346	79	0.24	46	6.429	0.8	0.071	1.0	1.525	1.3	0.156	0.8	932	7	960	21	3
20.1	0.18	356	100	0.29	47	6.520	1.1	0.071	1.2	1.499	1.6	0.153	1.1	920	9	954	24	4
20.2	0.13	346	82	0.24	45	6.668	1.0	0.070	1.3	1.442	1.7	0.150	1.0	901	9	921	27	2
21.1	_	357	97	0.28	48	6.354	1.3	0.071	2.0	1.536	2.3	0.157	1.3	942	11	951	40	1
22.1	0.03	361	86	0.25	48	6.445	0.8	0.072	0.9	1.531	1.2	0.155	0.8	930	7	973	19	5
23.1	_	399	92	0.24	54	6.303	0.8	0.072	0.8	1.569	1.1	0.159	0.8	949	7	979	17	3
24.1	0.05	425	103	0.25	57	6.388	0.8	0.070	0.9	1.504	1.2	0.157	0.8	938	7	919	18	-2
27.1	0.04	408	89	0.23	56	6.321	0.8	0.070	1.0	1.534	1.3	0.158	0.8	947	7	938	21	-1
28.1	0.07	387	97	0.26	53	6.301	0.8	0.070	1.1	1.533	1.3	0.159	0.8	950	7	931	22	-2
30.1	0.02	400	80	0.21	58	5.902	1.4	0.073	1.3	1.694	1.9	0.169	1.4	1009	13	1001	26	-1
31.1	_	346	84	0.25	46	6.504	1.1	0.071	0.9	1.504	1.4	0.154	1.1	922	9	956	18	4
32.1	-	353	84	0.25	48	6.387	0.8	0.070	1.2	1.511	1.4	0.157	0.8	938	7	929	24	-1
33.1	-	372	89	0.25	52	6.199	0.8	0.070	0.9	1.568	1.2	0.161	0.8	964	7	943	18	-2
34.1	0.02	705	49	0.07	97	6.237	0.7	0.070	0.7	1.541	1.0	0.160	0.7	959	6	919	13	-4
35.1	0.06	377	88	0.24	53	6.091	0.9	0.071	0.9	1.599	1.3	0.164	0.9	980	8	947	19	-3
36.1	0.03	378	90	0.24	50	6.530	0.8	0.069	1.1	1.461	1.3	0.153	0.8	919	6	905	23	-1
37.1	-	395	96	0.25	55	6.225	1.4	0.072	1.1	1.588	1.7	0.161	1.4	960	12	978	23	2
40.1	0.27	385	92	0.25	53	6.292	0.8	0.070	1.2	1.530	1.4	0.159	0.8	951	7	923	25	-3
41.1	-	351	83	0.25	46	6.559	1.0	0.070	1.0	1.481	1.4	0.153	1.0	915	8	941	20	3
42.1	0.16	390	80	0.21	50	6.754	0.9	0.068	1.3	1.396	1.6	0.148	0.9	890	8	880	27	-1
43.1	0.09	306	73	0.25	41	6.440	1.6	0.071	1.2	1.517	2.0	0.155	1.6	931	14	953	25	2
44.2	0.05	527	62	0.12	71	6.413	0.7	0.071	0.8	1.525	1.1	0.156	0.7	934	6	955	16	2
Oscillatory-zo	oned doma	in																
1.2	-0.01	1043	61	0.06	291	3.082	1.90	0.109	0.90	4.871	2.11	0.324	1.90	1812	30	1780	16	-2
8.1	0.22	315	62	0.20	49	5.573	2.05	0.087	2.17	2.155	2.98	0.179	2.05	1064	20	1362	42	28
11.1	0.11	155	39	0.26	36	3.676	5.32	0.104	9.57	3.903	10.95	0.272	5.32	1551	73	1697	176	9
15.2	0.05	685	81	0.12	145	4.048	0.91	0.100	1.20	3.403	1.51	0.247	0.91	1423	12	1622	22	14
16.2	-0.01	1144	129	0.12	296	3.320	1.22	0.108	1.33	4.487	1.80	0.301	1.22	1697	18	1766	24	4
17.2	0.00	1192	75	0.06	292	3.508	2.14	0.098	3.41	3.838	4.03	0.285	2.14	1617	31	1579	64	-2
18.2	0.02	2148	84	0.04	397	4.645	1.76	0.092	1.58	2.727	2.37	0.215	1.76	1257	20	1465	30	17
26.1	0.00	2110	233	0.11	566	3.204	0.68	0.110	0.41	4.748	0.79	0.312	0.68	1751	10	1805	7	3
44.1	0.01	992	99	0.10	209	4.084	1.70	0.106	2.10	3.574	2.70	0.245	1.70	1412	22	1729	39	22
45.1	0.00	2624	64	0.03	587	3.840	0.82	0.096	1.20	3.458	1.40	0.260	0.82	1492	11	1554	22	4
Inherited core																		
19.1	-0.01	785	108	0.14	233	2.890	0.43	0.120	0.71	5.725	0.83	0.346	0.43	1916	7	1956	13	2

Note: Errors (2σ) in the FC1 reference zircon calibration were 0.26% for mount 1 (samples EG-9d2 and EG-4a), 0.31% for mount 2 (samples EG-4g, EG-Kdp1), 0.40% for mount 3 (sample EG-SS11), and 0.18% for mount 4 (samples EG-San3A, EG-SM4, EG-An3, EG-Kdp4). Uncertainties quoted for individual spot analyses are at the 1σ level. Errors in the FC1 reference zircon calibration are not included in the above errors but are required when comparing data from different mounts. ²⁰⁶Pb_c% denotes the percentage of nonradiogenic ²⁰⁶Pb that is common Pb. ²⁰⁶Pb* denotes quantity of radiogenic Pb. Correction for common Pb for the U/Pb data has been made using the measured ²⁰⁴Pb.

	U Th							Radioge	enic ratios	(²⁰⁴ Pb corre	cted)			A	pparent	ages (Ma)		_
Spot	²⁰⁶ Pb。%	U (ppm)	Th (ppm)	Th/U	²⁰⁰ Pb* (ppm)	²³⁸ U/ ²⁰⁶ Pb	+%	²⁰⁷ Pb/ ²⁰⁶ Pb	+%	²⁰⁷ Pb/ ²³⁵ U	+%	²⁰⁶ Pb/ ²³⁸ U	+%	²⁰⁶ Ph/ ²³⁸ U	1σ error	²⁰⁷ Ph/ ²⁰⁶ Ph	1σ error	% Disc
Sample FC	G-San3A	(pp:///	(pp)		(pp)	0, 10	=/0	10, 10	_/0	10/ 0	=/0		270		0.1.01	1.5. 1.5	0.1.0.	/0 2100
Overarowt	h domain																	
21.2	0.06	247	313	1.31	35.8	5.910	0.60	0.072	1.10	1.670	1.3	0.169	0.6	1007	6	980	23	-3
Bright-CL of	lomain																	
10.1	-0.01	136	606	4.6	19.4	6.030	0.70	0.073	0.90	1.660	1.1	0.166	0.7	989	6	1005	19	2
27.1	0.09	110	319	3	15.2	6.220	0.80	0.071	2.40	1.570	2.6	0.161	0.8	961	7	952	50	-1
34.1	0.21	145	490	3.49	22.3	5.600	0.70	0.073	1.50	1.810	1.6	0.179	0.7	1059	7	1025	30	-3
Oscillatory	-zoned dom	ain																
8.1	0.2	208	169	0.84	32.2	5.570	0.60	0.080	2.70	1.980	2.8	0.180	0.60	1065	6	1193	53	12
12.1	-0.06	176	151	0.89	34.2	4.420	2.30	0.088	2.40	2.760	3.3	0.226	2.30	1314	28	1392	45	6
13.1	0.11	449	193	0.44	102.1	3.780	1.20	0.098	4.90	3.580	5.1	0.264	1.20	1512	16	1589	92	5
15.1	0	1255	1391	1.15	229	4.710	0.50	0.089	0.50	2.590	0.7	0.212	0.50	1241	6	1392	9	12
16.1	0.05	263	171	0.67	38.8	5.830	0.80	0.080	1.70	1.880	1.9	0.172	0.80	1021	8	1184	34	16
17.1	0.02	329	279	0.88	67.5	4.190	1.30	0.093	1.80	3.070	2.2	0.239	1.30	1379	16	1497	35	9
18.1	-0.01	364	207	0.59	93.6	3.340	4.60	0.103	2.20	4.260	5.1	0.299	4.60	1688	68	1682	42	0
19.1	0.01	358	199	0.58	63.8	4.820	3.60	0.088	5.20	2.500	6.4	0.207	3.60	1215	40	1372	101	13
20.1	-0.05	330	263	0.82	68.4	4.140	2.00	0.104	2.00	3.470	2.8	0.242	2.00	1395	25	1702	36	22
21.1	-0.01	659	227	0.36	137.8	4.110	3.20	0.093	4.20	3.120	5.2	0.243	3.20	1404	40	1485	79	6
22.1	0.02	1125	1681	1.54	207.2	4.660	0.40	0.088	0.40	2.600	0.6	0.215	0.40	1253	5	1382	7	10
23.1	0.06	314	284	0.94	52	5.190	3.00	0.079	2.60	2.090	4	0.193	3.00	1135	32	1164	52	2
25.1	0	439	292	0.69	95.8	3.940	1.50	0.094	2.80	3.280	3.2	0.254	1.50	1458	20	1500	53	3
26.1	0.02	337	329	1.01	84.8	3.420	2.90	0.098	2.60	3.940	3.9	0.293	2.90	1655	42	1579	48	-5
28.1	0.14	217	154	0.73	31.9	5.840	0.60	0.077	1.80	1.810	1.9	0.171	0.60	1018	6	1114	36	9
29.1	0.01	469	212	0.47	72.1	5.590	1.20	0.088	3.10	2.170	3.3	0.179	1.20	1061	11	1386	59	31
30.1	-0.03	149	196	1.36	30.9	4.130	3.70	0.095	3.60	3.170	5.1	0.242	3.70	1397	46	1527	68	9
32.1	0.02	798	332	0.43	140.4	4.880	1.30	0.084	4.30	2.370	4.5	0.205	1.30	1201	15	1293	83	8
37.1	0.04	1002	517	0.53	212.2	4.060	0.90	0.092	0.70	3,130	1.1	0.246	0.90	1420	11	1472	12	4
38.1	0	368	161	0.45	84.5	3.750	2.60	0.103	2.00	3.770	3.3	0.267	2.60	1525	35	1671	38	10
39.1	0	1004	1324	1.36	218	3.960	0.40	0.095	0.40	3.300	0.6	0.253	0.40	1453	6	1520	7	5
40.1	0.01	424	199	0.48	103.1	3.530	1.60	0.104	1.50	4.070	2.2	0.283	1.60	1606	23	1705	28	6
Sample EC	G-SM4																	
Overgrowt	h domain																	
9.2	2 0.0	5 1308	69	0.05	189.0	5.95	0.6	0.073	0.5	1.69	0.7	0.1681	0.6	1002	5	1010	9	1
17.1	0.0	0 1619	382	0.24	213.7	6.51	0.4	0.070	0.4	1.48	0.6	0.1536	0.4	921	4	920	8	0
21.1	0.0	0 2224	421	0.20	320.3	5.97	0.4	0.071	0.3	1.65	0.5	0.1676	0.4	999	4	967	7	-3
Oscillatory	-zoned/distu	irbed osci	llatory-zone	ed domain														
1.1	0.0	4 724	130	0.19	117.8	5.28	1.1	0.080	1.6	2.08	1.9	0.1892	1.1	1117	11	1189	31	6
2.1	0.0	0 2563	167	0.07	518.4	4.25	0.8	0.093	0.4	3.03	0.9	0.2355	0.8	1363	10	1495	8	10
3.1	0.5	6 931	183	0.20	170.6	4.72	2.5	0.085	1.5	2.50	2.9	0.2120	2.5	1240	28	1327	30	7
4.1	0.0	1 2267	212	0.10	375.7	5.18	1.1	0.080	1.7	2.14	2.0	0.1929	1.1	1137	12	1205	34	6
5.1	0.0	5 672	79	0.12	134.0	4.31	1.7	0.092	0.5	2.94	1.8	0.2320	1.7	1345	21	1463	10	9
6.1	0.0	3 661	75	0.12	119.2	4.76	2.1	0.091	2.5	2.63	3.3	0.2099	2.1	1229	23	1446	48	18
7.1	-0.0	1 661	40	0.06	125.4	4.53	1.9	0.088	1.6	2.69	2.5	0.2209	1.9	1287	22	1389	30	8
8.1	0.0	1 1127	143	0.13	220.3	4.39	0.8	0.089	2.1	2.79	2.3	0.2276	0.8	1322	10	1403	40	6
9.1	0.1	7 809	86	0.11	165.5	4.21	0.6	0.094	0.7	3.08	1.0	0.2377	0.6	1375	8	1510	14	10
12.1	0.0	3 1009	69	0.07	179.0	4.85	1.3	0.077	0.8	2.19	1.6	0.2063	1.3	1209	15	1116	16	-8
13.1	0.0	1 988	151	0.16	224.2	3.79	2.9	0.090	1.8	3.27	3.4	0.2641	2.9	1511	39	1423	35	-6
14.1	0.0	0 858	78	0.09	165.6	4.45	1.6	0.090	2.0	2.80	2.5	0.2247	1.6	1306	19	1432	38	10
15.1	0.0	6 3037	140	0.05	652.8	4.00	1.8	0.095	0.3	3.29	1.8	0.2500	1.8	1439	23	1536	5	7
18.1	0.0	0 3123	158	0.05	660.6	4.06	1.3	0.092	0.5	3.12	1.4	0.2462	1.3	1419	16	1463	10	3
20 1	0.0	5 924	46	0.05	202.2	3 93	05	0 000	22	3 4 9	22	0 2545	0.5	1462	6	1613	41	10

TABLE 4. ZIRCON SENSITIVE HIGH-RESOLUTION ION MICROPROBE ANALYSES AND APPARENT AGES FROM SAMPLES OF DOMAIN 2, EASTERN GHATS BELT

Note: Errors (2σ) in the FC1 reference zircon calibration were 0.26% for mount 1 (samples EG-9d2 and EG-4a), 0.31% for mount 2 (samples EG-4d, 0.40% for mount 3 (sample EG-SS11), and 0.18% for mount 4 (samples EG-San3A, EG-SM4, EG-An3, EG-Kdp4). Uncertainties quoted for individual spot analyses are at the 1σ level. Errors in the FC1 reference zircon calibration are not included in the above errors but are required when comparing data from different mounts. ²⁰⁶Pb_c% denotes the percentage of nonradiogenic ²⁰⁶Pb that is common Pb. ²⁰⁶Pb* denotes quantity of radiogenic Pb. Correction for common Pb for the U/Pb data has been made using the measured ²⁰⁴Pb.

								Radiogenic ratios (²⁰⁴ Pb corrected)						Apparent ages (Ma)				_
Spot	²⁰⁶ Ph-%	U (nnm)	Th (ppm)	Th/U	²⁰⁶ Pb* (ppm)	²³⁸ U/ ²⁰⁶ Ph	+%	²⁰⁷ Ph/ ²⁰⁶ Ph	+%	²⁰⁷ Ph/ ²³⁵ U	+%	²⁰⁶ Ph/ ²³⁸ U	+%	²⁰⁶ Ph/ ²³⁸ L	1σ error	²⁰⁷ Ph/ ²⁰⁶ Ph	1σ error	- % Disc
Sample F	=G-4a	(ppiii)	(ppiii)	111/0	(PPIII)	0, 10	170	10/10	10	1.0, 0	10	10, 0	170	1.6/ 0	01101		01101	70 2100
Overarov	vth domain																	
11.1	0.07	455	133	0.30	63	6.209	1.27	0.073	0.84	1.617	1.52	0.161	1.27	963	11	1009	17	5
15.1	0.13	337	126	0.39	43	6.808	1.03	0.069	1.27	1.395	1.64	0.147	1.03	883		895	26	1
26.1	0.80	281	107	0.39	39	6 241	1 04	0.072	2 07	1 593	2 31	0 160	1 04	958	9	989	42	3
40.1	0.15	427	124	0.30	56	6.534	0.98	0.070	0.99	1.474	1.39	0.153	0.98	918	8	924	20	1
Oscillator	rv-zoned/distu	rbed osci	llatorv-zone	ed domain		0.001	0.00	0.010	0.00			0.100	0.00	0.0	0	02.	_0	•
1.1	0.25	1614	128	0.08	313	4,437	1.16	0.093	2.40	2.897	2.66	0.225	1.16	1310	14	1493	45	14
21	0.64	1045	145	0.14	180	5 025	0.95	0.091	2 58	2 510	2 75	0 199	0.95	1170	10	1456	49	24
3.1	0.02	689		0.15	142	4 165	2 37	0.096	3.02	3 171	3.84	0 240	2 37	1387	30	1543	57	11
4 1	0.07	598	72	0.12	131	3 927	2 01	0.095	2 7 9	3 341	3 4 3	0 255	2 01	1462	26	1531	52	5
8 1	0.18	1093	122	0.12	198	4 750	1.08	0.092	0.49	2 665	1 19	0.211	1.08	1232	12	1464	9	19
13.1	0.00	1021	129	0.13	230	3 820	1 34	0 104	1 44	3 753	1.97	0.262	1.34	1499	18	1696	27	13
16.1	0.06	1051	127	0.13	230	3 933	2 13	0.107	2 4 2	3 743	3 23	0.254	2 13	1460	28	1745	44	19
17 1	0.18	179	52	0.30	31	4 930	1 10	0.092	1 05	2 572	1.52	0 203	1 10	1191	12	1467	20	23
18 1	0.01	1366	125	0.09	281	4 170	1 44	0.099	1 19	3 260	1.87	0 240	1 44	1386	18	1598	22	15
19.1	0.09	1448	64	0.05	294	4 229	1.80	0.093	3 20	3 018	3.67	0.236	1.80	1368	22	1479	61	
20.1	0.10	869	150	0.18	206	3 631	1 02	0 102	0.73	3 877	1 25	0.275	1.02	1568	14	1663	14	6
21.1	0.02	783	130	0.10	204	3 292	1.36	0.102	1 02	4 636	1 70	0.304	1.36	1710	20	1811	18	6
22.1	0.24	2072	125	0.06	394	4 525	0.97	0.095	1.88	2 899	2 11	0 221	0.97	1287	11	1531	35	19
25.1	0.38	821	228	0.29	150	4 722	1 56	0.093	1 99	2 715	2.53	0.212	1.56	1238	18	1488	38	20
28.1	0.44	345	269	0.80	95	3 128	3.03	0 109	1 15	4 798	3 24	0.320	3.03	1788	47	1780	21	_0
29.1	0.02	1814	156	0.00	387	4 030	2 31	0.100	1.10	3 435	2.66	0.248	2.31	1429	30	1631	24	14
30.1	0.01	946	90	0.00	181	4 4 9 3	2 42	0.093	0.75	2 860	2.54	0.213	2.01	1295	28	1492	14	15
32.1	0.01	117	50	0.10	22	4 534	1 18	0.000	3.00	2.838	3.23	0.220	1 18	1285	14	1495	57	16
33.1	0.06	812	91	0.11	183	3 821	1.10	0.000	2.69	3 729	2 94	0.262	1.10	1498	16	1685	50	12
34.1	0.00	148	59	0.41	27	4 655	1.09	0.096	2 79	2 831	3.00	0.202	1.09	1254	12	1540	52	23
35.1	0.03	986	104	0.11	184	4 612	1 40	0.000	1 4 2	2 741	2 00	0.217	1 40	1265	16	1461	27	16
Sample F	=G-An3	000	101	0.11	101	1.012	1.10	0.002		2.7.11	2.00	0.211	1.10	1200	10	1101		10
Overarov	vth domain																	
16 1	-0.02	366	12	0.03	46	6 757	0.56	0 070	0.83	1 421	1 00	0 148	0.56	890	5	918	17	3
25.1	0.02	764	73	0.10	109	6 052	1 04	0.070	0.60	1 600	1 20	0 165	1 04	986	9	935	12	-5
Oscillator	rv-zoned doma	ain		00		0.002		0.010	0.00			0.100			Ũ			•
2.1	-0.02	910	92	0.10	122	6.383	0.48	0.071	0.49	1.540	0.69	0.157	0.48	938	4	966	10	3
4 1	0.28	181	228	1 30	25	6 260	0.73	0.071	1 54	1 557	1 70	0 160	0.73	955	. 7	948	31	_1
61	-0.03	761	108	0.15	106	6 180	0.47	0.072	0.59	1 605	0.75	0 162	0.47	967	. 4	984	12	2
71	0.00	1166	174	0.15	159	6 309	0.78	0.071	0.53	1 558	0.94	0 159	0.78	948	7	966	11	2
8.1	0.03	810	168	0.21	116	5.982	0.47	0.072	0.56	1.660	0.73	0.167	0.47	997	. 4	987	11	-1
91	0.06	587	447	0.79	81	6 2 1 1	0.50	0.073	1 0 9	1 618	1 19	0 161	0.50	962	4	1011	22	5
11.1	0.04	457	447	1.01	65	6.046	0.56	0.072	0.76	1.637	0.94	0.165	0.56	987	5	980	15	-1
12.1	0.04	1114	140	0.13	155	6 175	0.00	0.071	0.51	1 589	0.70	0 162	0.47	968	4	962	10	-1
14 1	0.04	775	238	0.32	110	6 061	0.48	0.072	0.57	1 638	0.74	0 165	0.48	984	4	986	12	0
18 1	0.07	1292	216	0.17	177	6 285	0.61	0.071	0.49	1 558	0.78	0 159	0.61	952	5	958	10	1
19.1	0.02	821	140	0.18	111	6.380	0.50	0.070	0.59	1 512	0.77	0 157	0.50	939	4	927	12	-1
20.1	_0.02	232	299	1 33	38	5 235	1 16	0.073	0.90	1 922	1 47	0 191	1.16	1127	12	1013	18	_10
21.1	0.05	812	_00 _00	0.11	115	6 062	0.47	0.071	0.62	1 617	0.78	0 165	0.47	984	.2	960	13	_2
26.1	_0.02	491	104	0.22	68	6 238	0.76	0.072	0.69	1 584	1 03	0 160	0.76	958	7	977	14	2
29.1	0.02	610	92	0.16	85	6 182	0.53	0.072	0.00	1 500	0.91	0.162	0.53	967	5	977	15	1
30.1	-0.06	348	226	0.67	47	6 4 2 2	0.76	0.072	1 02	1 546	1 27	0 156	0.76	933	7	986	21	6
Inherited	core	040	-20	0.07	77	0.722	0.70	0.072	1.52	1.040		0.100	0.70	500	'	500	- 1	0
16.2	0 11	144	103	0 74	37	3 333	1 54	0 097	1 39	3 993	2.08	0 300	1 54	1692	23	1558	26	_8
24.1	_0.07	223	100	0.46	47	4 084	0.62	0.092	1 1 1	3 100	1 27	0 245	0.62	1412	20	1463	21	4
27.1	_0.01	171	101	0.61	49	3 028	1 03	0.002	3.82	4 893	3.95	0.330	1.03	1840	16	1757	70	-5

TABLE 5. ZIRCON SENSITIVE HIGH-RESOLUTION ION MICROPROBE ANALYSES AND APPARENT AGES FROM SAMPLES OF DOMAIN 2, EASTERN GHATS BELT

Notes: Errors (2σ) in the FC1 reference zircon calibration were 0.26% for mount 1 (samples EG-9d2 and EG-4a), 0.31% for mount 2 (samples EG-4g, EG-Kdp1), 0.40% for mount 3 (sample EG-SS11), and 0.18% for mount 4 (samples EG-San3A, EG-SM4, EG-An3, EG-Kdp4). Uncertainties quoted for individual spot analyses are at the 1σ level. Errors in the FC1 reference zircon calibration are not included in the above errors but are required when comparing data from different mounts. ²⁰⁶Pb_c% denotes the percentage of nonradiogenic ²⁰⁶Pb that is common Pb. ²⁰⁶Pb* denotes quantity of radiogenic Pb. Correction for common Pb for the U/Pb data has been made using the measured ²⁰⁴Pb.

	TABLE 6. ELECTRON MICROPROBE DATA	OF MONAZITE FROM SAMPLES	S OF DOMAIN 2, EASTERN GHATS BELT
--	-----------------------------------	--------------------------	-----------------------------------

lysis	SiO ₂	P ₂ O ₅	CaO	Y ₂ O ₃	La ₂ O ₃		Pr ₂ O ₃	Nd ₂ O ₃	SmO	Gd ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	PbO	ThO ₂	UO ₂	Total	Spot age (Ma)	1σ error
nple E	G-SS11	2-0		2.0	-2-0	2 - 0	2 - 0				<u>j</u> 2 = 0						X - 1	
in 1	0.27	30 50	0.91	2.06	13 82	28.22	3 13	11 34	1 59	1 08	0.51	0.00	0.23	4 08	0 32	98.05	1024	64
	0.24	30.43	0.72	2.00	14.20	28.70	3.19	11.42	1.55	1.00	0.48	0.00	0.23	3.00	0.52	97.99	1024	67
	0.26	30.53	0.85	2.20	13.96	28.36	3.12	11.42	1.59	1.17	0.50	0.02	0.22	3.70	0.33	98.23	1053	67
	0.28	29.99	0.88	2.13	13.80	28.22	3.08	11.43	1.58	1.20	0.49	0.04	0.22	3.90	0.31	97.54	1044	65
III 2	0 19	30.66	0.55	2 09	14 68	29.57	3 18	11 61	1 54	1 00	0 4 2	0.04	0 16	1 7 1	0 47	97 88	1115	90
	0.32	30.27	1.21	1.93	13.30	27.48	3.09	11.41	1.66	1.17	0.46	0.04	0.27	5.32	0.27	98.19	990	55
	0.18	30.56	0.58	2.16	14.73	29.73	3.23	11.62	1.47	0.90	0.41	0.00	0.16	1.68	0.40	97.81	1173	98
	0.29	30.49	1.14	2.26	13.36	27.34	3.06	11.21	1.63	1.27	0.52	0.10	0.26	4.92	0.32	98.17	997	56
in 3	0 25	30.22	0.84	2 24	13 77	28.02	3 12	11.39	1 55	1 15	0 4 9	0.05	0 22	3 63	0.35	97 27	1035	6
	0.26	30.41	0.82	2.18	13.96	28.42	3.07	11.35	1.60	1.13	0.51	0.04	0.21	3.56	0.34	97.85	1042	68
	0.27	30.10	0.85	2.19	13.88	28.36	3.13	11.63	1.60	1.13	0.53	0.06	0.21	3.68	0.34	97.97	1006	66
14	0.46	28.20	1 5 4	2.24	12 20	28 50	2 50	11 /3	1 3 1	0.83	0.37	0.06	0.36	0.31	Q 21	08 70	800	3/
	0.45	27.87	1.58	2.23	12.15	28.56	2.39	11.07	1.22	0.83	0.40	0.00	0.30	0.33	8.26	97.79	933	34
	0.45	27.74	1.53	2.18	12.50	28.27	2.57	11.35	1.21	0.88	0.37	0.03	0.37	0.23	8.24	97.92	955	3
	0.47	28.05	1.56	2.24	12.93	28.65	2.65	11.35	1.22	1.11	0.32	0.00	0.38	0.33	8.21	99.48	939	34
	0.39	28.16	1.55	2.17	12.87	28.82	2.81	11.50	1.29	1.09	0.48	0.12	0.32	0.20	7.51	99.27	901	39
	0.39	28.13	1.54	2.17	12.70	28.84	2.00	11.09	1.00	0.86	0.48	0.09	0.33	0.19	8.03	99.10	947 941	3
	0.44	27.76	1.49	2.08	12.20	28.75	2.67	11.27	1.17	1.00	0.39	0.06	0.32	0.16	8.04	97.79	884	37
	0.47	27.67	1.62	2.22	12.37	28.53	2.40	11.07	1.30	0.78	0.43	0.07	0.37	0.32	8.41	98.02	915	3
5	0.45	27.64	1.57	2.17	12.50	29.02	2.50	11.45	1.33	0.87	0.39	0.05	0.35	0.18	8.26	98.71	914	36
, ,	0.50	28.31	1.55	2.36	12.75	28.18	2.64	11.33	1.27	0.99	0.47	0.13	0.39	0.36	8.56	99.79	929	33
	0.57	27.59	1.58	2.42	12.96	27.57	2.79	11.02	1.24	1.24	0.45	0.04	0.39	0.37	8.61	98.82	925	32
	0.47	27.69	1.56	2.49	12.81	27.95	3.03	11.28	1.30	1.02	0.52	0.10	0.38	0.31	8.46	99.37	936	34
	0.52	28.52	1.56	2.48	12.77	27.96	2.82	10.98	1.32	1.07	0.40	0.09	0.40	0.41	8.42	99.72	949	3
	0.43	28.03	1.56	2.21	12.00	28.09	2.72	11.39	1.20	0.82	0.43	0.14	0.33	0.22	8.76	99.50	910	3
	0.53	28.27	1.57	2.34	12.80	28.34	2.71	11.44	1.15	0.87	0.38	0.11	0.36	0.25	8.54	99.67	900	34
•	0.56	28.14	1.58	2.35	12.99	27.60	2.60	11.08	1.27	1.21	0.45	0.08	0.38	0.36	8.57	99.20	917	33
6	0.20	28.24	1 / 3	2 37	13 23	28.81	2 80	11 7/	1 / 2	1.08	0.48	0 10	0.20	0.20	6 70	00 36	882	1
	0.29	27.68	1.44	2.37	13.29	29.03	3.02	11.77	1.42	0.99	0.46	0.08	0.29	0.29	6.53	99.30	909	42
	0.25	28.94	1.46	2.68	13.06	28.87	2.80	11.47	1.35	1.05	0.45	0.11	0.29	0.35	6.17	99.30	918	44
	0.28	28.10	1.42	2.44	12.68	29.09	2.95	11.83	1.34	1.04	0.50	0.10	0.31	0.30	6.55	98.91	946	42
	0.41	27.55	1.47	2.31	12.99	28.22	2.51	11.40	1.19	0.85	0.43	0.09	0.34	0.22	7.79	97.77	931	3
	0.40	27.73	1.49	2.51	12.88	27.75	2.65	10.86	1.30	1.01	0.41	0.02	0.32	0.23	7 33	97.67	888	3
	0.40	27.85	1.48	2.81	13.16	27.99	2.54	11.05	1.27	1.15	0.39	0.07	0.33	0.31	7.63	98.43	895	3
	0.34	27.63	1.38	2.38	13.36	28.94	2.83	11.41	1.21	0.88	0.47	0.00	0.30	0.28	6.75	98.16	908	4
	0.34	26.76	1.39	2.42	13.13	28.87	3.04	11.42	1.20	1.05	0.39	0.08	0.32	0.29	6.96	97.66	938	4
	0.32	27.93	1.39	2.31	13.19	29.43	2.54	11.47	1.13	0.93	0.40	0.05	0.30	0.29	6.76	98.44	909	4
7	0.00	20.00	1.00	2.00	12.07	20.00	2.02	11.00	1.17	1.10	0.40	0.00	0.00	0.21	0.00	50.07	512	
	0.64	27.81	1.40	2.28	13.04	28.33	2.99	11.57	1.34	0.98	0.42	0.00	0.34	0.23	8.25	99.62	878	35
	0.71	27.85	1.35	1.97	13.29	29.02	2.79	11.71	1.31	0.92	0.35	0.10	0.36	0.22	8.42	100.36	909	35
	0.89	27.57	1.36	1.71	12.95	28.55	2.76	11.64	1.28	1.01	0.22	0.03	0.38	0.16	9.21	99.74	904 843	32
	1.32	26.09	1.48	1.26	12.99	27.99	2.70	11.32	0.90	0.84	0.30	0.00	0.46	0.13	11.29	99.12	885	26
	1.15	26.64	1.59	1.44	12.66	27.77	2.75	11.22	1.03	0.85	0.30	0.02	0.45	0.14	11.45	99.47	890	26
	0.47	27.40	1.98	3.77	11.70	25.71	2.30	10.35	0.96	0.99	0.73	0.09	0.43	0.31	10.17	97.34	899	28
	0.52	27.93	2.26	4.21	11.26	25.67	2.45	10.14	1.16	0.92	0.59	0.20	0.45	0.50	10.82	99.07	843	26
le E	<u>G-9d2</u>																	
1	0.07	20 70	4.00		44.00	05.00	0.00	44.04	4.00	4 77	4.05	0.44	0.00	E 00	0.00	00.00	4000	
	0.27	30.70	1.06	4.44 4.26	11.82	25.39 25.76	2.96	11.21 11.32	1.89	1.//	1.05	0.11 0.16	0.26	5.09	0.23	98.26 08 87	1033	5
	0.26	30.77	1.11	4.23	11.99	25.65	3.00	11.26	1.85	1.82	1.02	0.05	0.27	5.12	0.29	98.68	1017	55
	0.28	30.74	1.05	3.27	12.48	26.55	3.03	11.39	1.90	1.60	0.87	0.11	0.27	4.94	0.35	98.84	1017	55
	0.31	30.64	1.00	2.93	12.53	26.73	3.10	11.44	1.89	1.60	0.86	0.04	0.28	4.72	0.47	98.53	1031	54
	0.28	30.70	1.09	3.70	12.29	26.06	3.01	11.21	1.85	1.66	0.93	0.12	0.28	5.26	0.25	98.69	1048	56
	0.28	30.81	1.11	4.18	12.09	25.81	∠.88 2.97	11.20	1.87	1.83 1.81	0.98	0.04	0.28	5.22 4 99	0.25	98.91	1046	56
	0.28	30.81	1.07	3.81	12.30	26.12	3.02	11.28	1.85	1.74	0.90	0.09	0.27	5.11	0.26	98.88	1051	5
	0.29	30.68	1.08	3.72	12.30	26.01	2.93	11.11	1.81	1.62	0.91	0.05	0.27	5.15	0.24	98.16	1031	50
	0.25	30.65	1.06	3.94	12.27	25.95	2.94	11.24	1.86	1.72	0.94	0.02	0.25	4.93	0.27	98.27	998	56
2	0.29	30.65	1.18	3.90	12.11	25.83	2.96	11.13	1.73	1.67	0.91	0.02	0.29	5.73	0.30	98.71	1005	5
-	0.17	29.34	1.19	4.48	12.23	28.64	2.65	12.16	1.54	1.43	0.82	0.10	0.30	5.25	0.24	100.55	889	51
	0.16	29.46	1.17	4.42	12.41	28.08	2.86	11.98	1.62	1.64	0.79	0.13	0.27	5.13	0.23	100.37	891	53
	0.16	29.21	1.14	4.42	12.57	28.38	2.76	12.06	1.45	1.37	0.96	0.19	0.28	5.13	0.24	100.32	922	53
	0.15	29.39	1.05	4.45	12.24	28.13	2.97	12.48	1.48	1.62	0.84	0.15	0.27	4.73	0.22	100.17	927	57
	0.15	29.21 20.33	1.05	4.43 4 1 1	12.27	28.50	2.84	12.41 12.41	1.43	1.42 1.54	0.86 0.86	0.18 0.12	0.27	4.80 4 84	0.23	100.05	942 040	56
	0.16	29.20	1.13	4.41	12.30	28.08	2.62	11.96	1.73	1.43	0.79	0.19	0.28	5.08	0.23	99.62	916	53
	0.16	28.99	1.19	4.49	12.04	27.86	2.44	12.09	1.40	1.39	0.79	0.14	0.29	5.36	0.25	98.86	918	5
	0.17	29.33	1.17	4.47	12.28	28.40	2.73	12.25	1.62	1.44	0.78	0.16	0.27	5.25	0.24	100.56	895	52
3	0.14	29.11	1.05	4.46	12.38	28.81	2.84	12.28	1.38	1.49	0.80	0.14	0.27	4.73	0.23	100.10	950	57
J	0.20	29.44	1.17	4,58	12.49	28.04	2.82	12 04	1.27	1 58	0.67	0.08	0.23	5,59	0.25	100 43	911	50
	0.18	29.20	1.22	4.61	12.45	28.23	2.51	11.81	1.13	1.44	0.71	0.10	0.29	5.58	0.25	99.71	906	49
	0.19	29.38	1.17	4.64	12.09	28.58	2.44	12.00	1.33	1.43	0.79	0.05	0.26	5.51	0.24	100.09	883	50
	0.19	29.20	1.17	4.68	12.12	28.11	2.48	11.99	1.23	1.41	0.70	0.13	0.26	5.55	0.26	99.46	956	50
	0 10	20.31	1 10	1 71	12 25	28 18	2 5 8	11 87	1 1 2	1 55	0 71	0 1/	0.27	5 5 5	0.26	00.04	020	50

72	0.20	28.96	1.18	4.71	12.09	28.22	2.60	11.93	1.30	1.56	0.86	0.15	0.26	5.63	0.26	99.90	942	49
73	0.19	29.22	1.19	5.33	11.78	27.08	2.52	11.89	1.38	1.52	0.73	0.18	0.28	5.57	0.25	99.11	891	49
74	0.18	29.19	1.17	4.63	11.94	27.72	2.58	11.90	1.36	1.54	0.78	0.18	0.30	5.62	0.25	99.32	891	48
75	0.17	29.31	1.20	4.66	12.38	28.11	2.61	11.67	1.26	1.53	0.78	0.07	0.28	5.56	0.27	99.87	971	49
76	0.17	29.48	1.07	3.57	13.01	29.50	2.74	12.24	1.34	1.16	0.69	0.04	0.76	4.82	0.29	100.85	916	45
Grain 4																		
77	0.41	28.04	1.58	4.55	11.44	26.29	2.47	10.12	1.25	1.34	0.68	0.22	0.20	8.57	0.35	97.50	885	34
78	0.43	28.15	1.60	4.54	11.07	25.77	2.32	11.17	1.31	1.36	0.75	0.21	0.20	9.00	0.38	98.24	920	33
79	0.48	27.98	1.57	4.43	11.33	26.14	2.21	11.02	1.27	1.42	0.64	0.14	0.19	8.96	0.37	98.14	894	33
80	0.37	28.31	1.56	4.89	11.55	26.13	2.45	10.88	1.43	1.37	0.70	0.10	0.22	8.40	0.38	98.73	980	35
81	0.42	28.10	1.54	4.41	11.59	26.84	2.40	11.08	1.26	1.37	0.73	0.16	0.19	8.53	0.36	98.96	913	35
82	0.41	28.30	1.57	4.27	11.79	26.50	2.75	11.27	1.33	1.26	0.60	0.20	0.19	8.65	0.36	99.45	903	34
83	0.21	28.50	1.32	4.73	11.93	27.16	2.56	11.41	1.37	1.24	0.69	0.08	0.26	6.34	0.27	98.06	878	44
84	0.22	28.75	1.31	4.71	12.12	27.48	2.71	11.44	1.23	1.49	0.69	0.25	0.27	6.39	0.29	99.34	911	44
85	0.22	28.55	1.30	4.71	12.04	27.52	2.25	11.04	1.17	1.36	0.76	0.06	0.26	6.38	0.27	97.89	868	44
86	0.21	28.75	1.35	4.70	11.83	27.49	2.44	11.32	1.33	1.32	0.69	0.19	0.28	6.47	0.28	98.64	870	43
87	0.22	28.27	1.29	4.98	12.08	27.38	2.38	11.07	1.22	1.36	0.73	0.13	0.25	6.31	0.22	97.89	713	44
88	0.20	18.90	0.85	4.66	11.19	25.13	2.41	9.90	1.11	0.52	0.32	0.04	0.29	6.07	0.29	81.90	970	45
89	0.34	28.49	1.33	4.42	11.83	27.15	2.69	11.37	1.22	1.32	0.60	0.14	0.20	7.54	0.32	98.95	921	39
90	0.38	28.42	1.48	4.23	11.90	26.92	2.37	11.36	1.26	1.07	0.70	0.11	0.19	8.24	0.35	98.99	930	36
91	0.37	28.77	1.55	4.34	11.68	26.52	2.61	11.64	1.28	1.35	0.70	0.10	0.20	8.27	0.35	99.74	908	35
92	0.39	28.35	1.55	4.27	11.65	26.71	2.65	11.49	1.15	1.32	0.69	0.13	0.19	8.52	0.36	99.42	927	35
93	0.32	28.42	1.49	4.44	11.62	26.93	2.48	11.44	1.41	1.26	0.74	0.07	0.19	7.87	0.33	99.01	904	37
94	0.30	27.83	1.49	4.41	11.52	26.46	2.59	11.39	1.29	1.21	0.76	0.20	0.20	7.81	0.33	97.77	907	37
95	0.30	28.34	1.47	4.45	11.65	26.39	2.53	11.00	1.26	1.38	0.74	0.20	0.21	7.64	0.34	97.90	938	38
96	0.29	28.55	1.44	4.46	11.90	26.81	2.36	10.89	1.31	1.38	0.66	0.19	0.23	7.46	0.32	98.25	915	39
97	0.21	28.85	1.31	4.71	11.94	27.46	2.74	11.60	1.33	1.47	0.72	0.12	0.27	6.43	0.27	99.43	877	44
98	0.22	28.17	1.34	4.69	11.85	27.38	2.31	11.70	1.21	1.48	0.72	0.14	0.28	6.45	0.29	98.23	919	43
99	0.20	29.00	1.27	5.05	12.04	27.23	2.48	11.45	1.24	1.65	0.83	0.18	0.28	6.32	0.27	99.49	879	44
100	0.19	28.92	1.30	5.07	11.94	27.19	2.39	11.41	1.09	1.46	0.87	0.14	0.27	6.29	0.28	98.82	897	44

100 0.19 28.92 1.30 5.07 11.94 27.19 2.39 11.41 1.09 1.46 0.87 0.14 0.27 6.29 0.28 98.82 897 44 Note: Monazite analysis at the Indian Institute of Technology, Kharagpur, was carried out using a CAMECA SX-100 microprobe. Calibrations used were 20 kV and 20 nA, while analyses were done at 20 kV and 200 nA. Synthetic standards were used for La, Ce, Nd, Pr, Sm, Ho, Dy, and Gd. Apatite was used as standard for P, yittrium aluminum garnet (YAG) as Y, corundum for AI, hematite for Fe, and orthoclase was used for Si. Uncertainties in the individual analysis in the table and weighted mean ages are quoted at 95% confidence level. The age estimations were simultaneously checked with two monazite grains with ages of 2546 Ma (isotope dilution-thermal ionization mass spectrometry) and 1033 Ma (sensitive high-resolution ion microprobe [SHRIMP] zircon), respectively. Other calibration details are same as described in Bhandari et al. (2011). Monazite analysis at the National Institute of Polar Research, Japan, was carried out using a JEOL-JXA 8200 microprobe. Analytical conditions were maintained at 15 kV accelerating voltage and 200 nA probe current. The age estimations were simultaneously checked with monazite grains with SHRIMP zircon age of 1033 Ma. Other calibration details are same as described in Hokada and Motoyoshi (2006).