GSA DATA REPOSITORY 2010095

ANALYTICAL TECHNIQUES

Zircon mineral separates were prepared from bulk rock samples by crushing, gravity, and magnetic separation, heavy liquids, and hand picking under fiber optic illumination at the Australian National University Research School of Earth Sciences (ANU-RSES). Zircons were mounted in epoxy, ground to approximately half-thickness, and polished with 6 µm and 1 µm diamond suspension. Cathodoluminescence (CL) images for zircon characterization were collected using scanning electron microscope, together with transmitted and reflected light images using a petrographic microscope. Zircon U-Th-Pb isotopic analyses were collected using SHRIMP II at ANU-RSES and SHRIMP RG at Geoscience Australia, following procedures described in Williams (1998). Data were reduced using the SQUID Excel Macro of Ludwig (2001). The U-Pb ratios have been normalized relative to a value of 0.0668 for the Temora reference zircon, equivalent to an age of 417 Ma (Black et al., 2003). Data appear in Data Repository Table DR1. Ages are reported as weighted mean of ²⁰⁶Pb/²³⁸U ages for coherent zircon populations.

Uncertainties given for individual analyses (ratios and ages) are at the one-sigma level. Probability density plots with stacked histograms and weighted mean ²⁰⁶Pb/²³⁸U ages and Tera-Wasserburg (1972) concordia plots were calculated using ISOPLOT/EX (Ludwig, 2003). ISOPLOT/EX employs the "Mixture Modeling" algorithm of Sambridge and Compston (1994) to un-mix statistical age populations or groupings, which are in turn used to calculate weighted mean ²⁰⁶Pb/²³⁸U ages. Uncertainties are reported as 95% confidence limits.

REFERENCES

- Black, L. P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., and Foudulis,
 C., 2003, TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology,
 Chemical Geology, v. 200, p. 155–170.
- Ludwig, K.R., 2001, SQUID 1.02, A User's Manual; Berkeley Geochronology Center Special Publication, vol. 2, Berkeley Geochronology Center Special Publication, 2455 Ridge Road, Berkeley, CA 94709, USA.
- Ludwig, K.R., 2003, User's Manual for Isoplot/Ex, Version 3.0, A geochronological toolkit for Microsoft Excel Berkeley Geochronology Center Special Publication, v. 4, Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA.
- Sambridge, M. S. Compston, W., 1994, Mixture modeling of multi-component data sets with application to ion-probe zircon ages, Earth and Planetary Science Letters 128, v. 3–4, p.373–390.
- Tera, F., and Wasserberg G., 1972, U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks, Earth and Planetary Science Letters, v. 14, p. 281–304.
- Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe, *in* McKibben, M.A., Shanks
 III, W.C., and Ridley, W.I., eds., Application of Microanalytical Techniques to
 Understanding Mineralizing Processes, Reviews in Economic Geology, Littleton, CO,
 Society of Economic Geologists, p. 1–35.

	Divine	Janniary			2110011103011		loogram				
							Total				Radiogeni c ratios
Grain	U	Th	Th/ U	²⁰⁶ Pb *	²⁰⁴ Pb/	f ₂₀₆	²³⁸ U/		²⁰⁷ Pb/		²⁰⁶ Pb/
spot	(ppm	(maa) (i		(ppm)	²⁰⁶ Pb	%	²⁰⁶ Pb	±	²⁰⁶ Pb	±	²³⁸ U
* Samp Rims	le M6-L	.188 - grar	nite sill fr	rom Mt. L	.ockhart (Loc	ation:S	76° 26.4	35 , W 1	45° 11.623	3)	
1.1	763	42	0.055	10.6	0.000302	0.25	61.98	0.74	0.0500	0.001 0 0.000	0.0161
3.1	1517	142	0.094	24.2	-	0.08	53.89	0.58	0.0490	6 0.000	0.0185
4.2	2613	10	0.004	39.9	0.000034	0.15	56.28	0.59	0.0495	0.000 5	0.0177
6.1	1210	6	0.005	17.4	0.000046	0.15	59.65	0.66	0.0493	0.000	0.0167
8.1	2545	7	0.003	38.7	0.000046	0.13	56.53	0.60	0.0493	0.000 5 0.000	0.0177
12.1	1002	29	0.029	14.1	-	<0.0 1	61.08	0.69	0.0480	0.000	0.0164
13.1	1043	33	0.032	14.7	0.000400	0.29	60.94	0.68	0.0505	0.001	0.0164
14.1	1009	5	0.005	14.3	0.000164	0.04	60.61	0.68	0.0485	0.000 7 0.000	0.0165
15.1	479	165	0.344	24.7	0.000112	0.13	16.67	0.19	0.0552	6 0.000	0.0599
17.1	2496	149	0.060	40.4	0.000149	0.10	53.11	0.56	0.0492	0.000 5 0.001	0.0188
18.1	1683	66	0.039	25.0	0.000815	1.02	57.81	0.62	0.0563	0 000	0.0171
20.1	1915	31	0.016	28.4	0.000236	0.18	57.98	0.62	0.0497	5 0.000	0.0172
21.1	2623	53	0.020	42.5	0.001755	2.91	53.04	0.55	0.0715	5 0 000	0.0183
22.1	1713	8	0.005	25.4	0.000023	0.11	58.03	0.61	0.0491	5	0.0172
Core s											
2.1	172	216	1.261	2.7	0.000693	1.28	55.18	0.91	0.0585	0.002	0.0179
4.1	100	106	1.058	1.6	0.002504	1.47	53.00	0.96	0.0601	0.002	0.0186
5.1	419	166	0.396	6.6	0.000482	0.41	54.81	0.72	0.0516	0.001	0.0182
6.2	306	450	1.470	4.8	0.000946	0.43	54.78	0.73	0.0518	0.001 3	0.0182
7.1	851	151	0.178	13.8	0.000068	0.29	53.03	0.60	0.0508	8	0.0188

TABLE DR1. Summary of SHRIMP U-Pb zircon results for leucogranite sheets in the Fosdick Mountains

0.0	4470	044	0.000	10.4		0.00	E4 00	0.57	0.0400	0.000	0.0402
8.2	1172	314	0.268	19.4	-	0.03	51.82	0.57	0.0488	0 000	0.0193
0.1	2000	11	0.006	32.0	0 000270	0.46	5/ 81	0.58	0.0520	0.000	0.0182
9.1	2099	14	0.000	52.9	0.000270	0.40	54.01	0.50	0.0520	0.001	0.0102
10.1	225	138	0.611	3.7	0.000779	0.56	52.57	0.75	0.0529	9	0.0189
				•						0.002	
11.1	131	107	0.814	2.0	0.000790	0.42	55.31	0.93	0.0516	1	0.0180
										0.002	
12.2	140	123	0.881	2.2	0.000305	0.39	53.61	0.88	0.0515	0	0.0186
										0.001	
13.2	419	468	1.117	6.4	0.000375	0.17	55.82	0.71	0.0497	1	0.0179
										0.001	
14.2	365	350	0.958	5.7	0.000257	0.27	54.86	0.71	0.0505	2	0.0182
						<0.0				0.000	
15.2	1189	880	0.740	60.4	0.000013	1	16.92	0.18	0.0539	4	0.0591
										0.001	
16.1	401	101	0.252	6.3	-	0.28	55.04	0.70	0.0505	2	0.0181
								0.10		0.000	
18.2	779	138	0.177	77.5	0.000035	0.04	8.633	1	0.0633	6	0.1158
										0.001	
19.1	312	373	1.195	5.0	-	0.21	53.87	0.72	0.0501	3	0.0185

*Sample C6-BB112 - leucogranite sheet from Bird Bluff (Location: S 76° 30.197 , W 144° 35.618 $\,)$ Rims

					0.00002		61.7		0.049		
1.1	1365	41	0.03	19.0	7	0.12	5	0.67	0	0.0006	0.0162
					0.00013		59.6		0.048		
2.1	3400	244	0.07	49.0	3	0.02	6	0.62	3	0.0004	0.0168
							60.3		0.048		
3.1	2833	181	0.06	40.3	-	0.03	5	0.63	4	0.0004	0.0166
					0.00018		61.3		0.048		
4.1	1873	87	0.05	26.2	0	0.08	3	0.65	7	0.0005	0.0163
					0.00008		61.2		0.048		
5.1	2823	144	0.05	39.6	9	0.05	1	0.64	5	0.0006	0.0163
					0.00006		61.3		0.049		
6.1	3417	242	0.07	47.8	0	0.12	6	0.64	0	0.0005	0.0163
					0.00004		54.7		0.048		
7.1	2535	223	0.09	39.8	6	0.00	5	0.57	4	0.0005	0.0183
					0.00005		62.5		0.049		
8.1	2416	121	0.05	33.2	9	0.15	4	0.66	2	0.0005	0.0160
					0.00012		63.3		0.048		
9.1	2011	61	0.03	27.3	8	0.08	7	0.67	6	0.0005	0.0158
							61.5		0.048		
12.1	1829	80	0.04	25.5	-	0.07	3	0.66	7	0.0006	0.0162
					0.00008		62.2		0.048		
13.1	2282	108	0.05	31.5	6	0.07	9	0.71	6	0.0005	0.0160
							40.8		0.050		
14.1	1696	34	0.02	35.6	-	0.18	7	0.43	6	0.0005	0.0244
					0.00005		63.3		0.048		
15.1	1960	83	0.04	26.6	4	0.08	5	0.68	7	0.0005	0.0158
					0.00017		61.8		0.050		
16.1	2521	164	0.07	35.0	7	0.32	9	0.65	6	0.0005	0.0161
					0.00011		62.2		0.048		
17.1	2304	117	0.05	31.8	2	0.01	6	0.67	1	0.0005	0.0161

Core s

-											
							17.4		0.054		
3.2	747	1430	1.91	36.9	-	0.13	0	0.19	8	0.0005	0.0574
					0.00004		17.3		0.053		
10.1	680	50	0.07	33.7	9	<0.01	5	0.19	3	0.0005	0.0577
					0.00008		18.3		0.054		
11.1	693	407	0.59	32.4	7	0.10	5	0.20	1	0.0005	0.0544
					0.00001		5.41		0.075		
12.2	2009	1091	0.54	318.8	0	0.02	5	0.055	7	0.0002	0.1846
					0.00004		4.36		0.109		
15.2	323	147	0.46	63.7	9	0.08	0	0.048	3	0.0006	0.2292
							17.6		0.054		
17.2	250	327	1.31	12.2	-	0.04	3	0.25	0	0.0008	0.0567

Uncertainties given at the 1σ level.

 f_{206} % denotes the percentage of ²⁰⁶Pb that is common Pb.

Correction for common Pb made using the measured ²³⁸U/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb ratios

following Tera and Wasserburg (1972) as outlined in Williams (1998).