## **GSA DATA REPOSITORY 2009201**

# Is Mid-Late Paleozoic ocean-water chemistry coupled with epeiric seawater isotope records?

Uwe Brand<sup>1</sup>, Jun-ichi Tazawa<sup>2</sup>, Hiroyoshi Sano<sup>3</sup>, Karem Azmy<sup>4</sup>, Xinqing Lee<sup>5</sup>

SUPPLEMENTARY INFORMATION

#### Methods

A total of 42 samples (7 – whole rock/matrix: mAC); 35 – brachiopods: bLMC) from Japan and China were examined for this study. The biogenic components were manually separated from their enclosing host rock, cleaned and powdered for chemical analysis. Trace chemistry was determined on a Varian 400P atomic absorption spectrophotometer. The accuracy and precision of results relative to NBS 633 was for Ca (1.00, 3.49), Mg (1.13, 2.86), Sr (2.08, 6.44), Mn (2.42, 2.95), and Fe (3.39, 5.16) relative percent, respectively. A subset of samples was analyzed for carbon, oxygen (Memorial University) and strontium isotopes (Ruhr University – Bochum). The C and O isotope results are expressed as delta permil relative to PDB. The precision and accuracy of analyses are better than 0.05 ‰ and 0.1‰, respectively (NBS 19-IAEA). Processing for strontium isotope values followed standard analytical procedures for carbonate powders. Strontium isotope results of samples were adjusted to an average value of 0.710247 relative to NBS 987. All results are presented in Appendix 1, and the data set from China was supplemented by results of Lee and Wan, 2000 (uppermost horizons of Stratum 120).

#### **Diagenetic Evaluation**

The preservational integrity of carbonates is paramount in using geochemical results for constructing trends of a global importance. A multi-faceted approach is used to evaluate the integrity of biogenic and abiogenic allochems, including a visual inspection of diagenetic alteration (e.g., discoloration – nacreous shell luster turning dull/white; fractures filled with cement), a microstructural evaluation of internal shell features by scanning electron microscope, trace element re-distribution and divergence of isotope values from 'normal' parameters (e.g., Brand and Veizer, 1980, 1981; Marshall, 1992; Banner and Kaufman, 1994; Brand, 2004).

The microstructures of two specimens showing the whole spectrum of preservation/alteration are depicted in Supp. Fig. DR1. Plate A shows that the fibers and possibly the prisms of the secondary and tertiary layer in a specimen of *Isogramma millepunctata* (OMI-374) have been replaced by diagenetic coarse-mosaic calcite. Plate B is an example of preservation of both the fibers of the secondary layer (upper portion of scan) and the prisms of the tertiary layer (lower portion) in a *Neospirifer* sp. (OMI-394; Supp. Fig. DR1). These two SEM scans are typical of the preservation, in a majority, and alteration observed in the specimens from Japan (this study) and China (cf. Lee and Wan, 2000).

Diagenesis of carbonate allochems leads to increases in Mg, Mn and Fe and concomitant decreases in Sr contents if alteration proceeded in a partly-open to open system controlled by meteoric water (cf. Brand and Veizer, 1980; Brand, 2004). In such a diagenetic system, the carbon and oxygen isotope values of the pristine material tend to be more positive than that of their altered counterparts (cf. Brand and Veizer, 1981). Identification of preserved and altered specimens is followed with the additional testing of trace element and isotope trends. Supp. Fig. DR2 shows the chemical trends for samples from the *Fusulina-Fusulinella biconica* Zone (Moscovian) of the Akiyoshi Limestone, Akiyoshi Terrane sampled at OMI, Japan (Tazawa, 2007). Brachiopod samples deemed preserved cluster closely about sample OMI-394 for Sr and Mg, whereas altered brachiopods and matrix/whole rock show decreasing Sr contents with increasing Mg values with progressive diagenetic alteration (Supp. Fig. DR2A). In contrast are the trends for Mn and Fe with relatively low values of both recorded in the pristine material and concomitant higher contents in diagenetically altered samples and material (Supp. Fig. DR2B). The overall small change in Mn and Fe contents speaks to the fact that probably water other than strictly meteoric water was responsible or the driving force for the diagenetic alteration of the carbonate materials from Japan (cf. Walter et al., 1993; work in prep).

The stable isotope (carbon and oxygen) trends follow the expected decrease with increasing diagenetic stabilization in a partly closed system in the presence of some carbon dioxide-charged meteoric water and/or fluid of increased temperature (Supp. Fig. DR2C). The slight decreases in carbon isotope values may be the result of more complex diagenetic processes other than meteoric water such as pore water in the shallow burial environment (cf. Patterson and Walter, 1994; Walter et al., 2007) or some other fluids (waters) of unknown composition and origin.

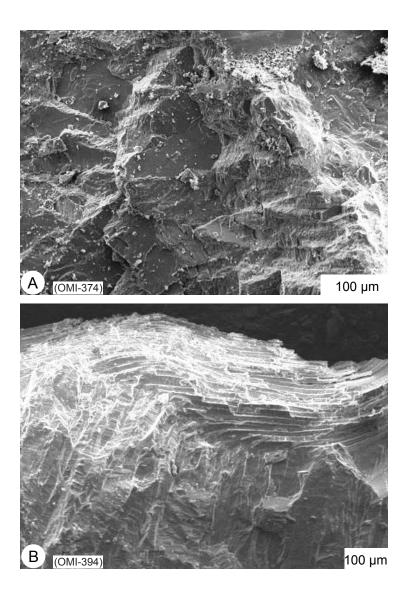
The Sr isotope trends of pristine to diagenetic altered material observed in this study and the results of Nishioka et al., 1991) are in contrast to conventional observations, which suggest that diagenesis leads to more radiogenic values in the altered product (e.g., Veizer, 1989; Denison et al., 1994). However, in special circumstances, it has been observed that diagenesis actually has the opposite impact and leads to less radiogenic values in the diagenetically affected carbonate allochems (cf. Brand, 1991; Gröcke et al., 2007). This effect may be the outcome of diagenetic alteration in the presence of pore-waters in the shallow burial environment of platforms and/or shelves noted for mineralogy, trace chemistry and isotopes (Hu and Burdige, 2007; Swart and Eberli, 2005; Hover et al., 2001). More work will be done to explore this diametrically opposed trend of Sr isotope re-distribution with diagenesis on the full suite of carbonate allochems from the Mino and Akiyoshi terranes of Japan.

All samples in the appendix have been evaluated for their preservational status, and the pristine material and results are highlighted by sample #s in bold (Appendix 1), whereas altered material and results are in normal font.

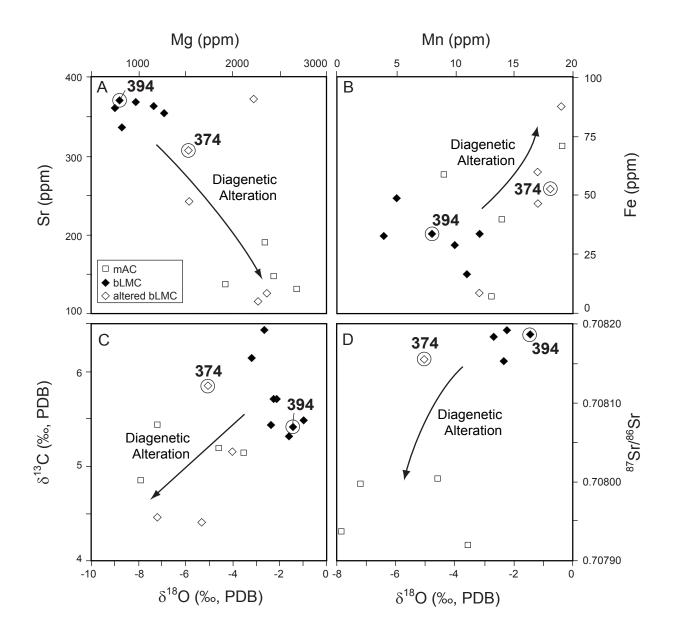
### **References Cited**

- Banner, J.L., and Kaufman, J., 1994, The isotopic record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks, Illinois and Missouri: Geological Society of America Bulletin, v. 106, p. 1974-1082.
- Brand, U., and Veizer, J., 1980, Chemical diagenesis of a multi-component carbonate system: 1, Trace elements: Journal of Sedimentary Petrology, v. 50, 1219-1236.
- Brand, U., and Veizer, J., 1981, Chemical diagenesis of a multi-component carbonate system: 2, Stable isotopes: Journal of Sedimentary Petrology, v. 51, p. 987-997.

Brand, U., 1991, Strontium isotope diagenesis of biogenic aragonite and low-Mg calcite:


Geochimica Cosmochimica Acta, v. 55, p. 505-513.

- Brand, U., 2004, Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies: Chemical Geology, v. 204, p. 23-44.
- Denison, R.E., Koepnick, R.B., Fletcher, A., Howell, M.W., and Callaway, W.S., 1994, Criteria for the retention of original seawater <sup>87</sup>Sr/<sup>86</sup>Sr in ancient shelf limestones: Chemical Geology, v. 112, p. 131-143.
- Gröcke, D.R., Hesselbo, S.P., and Findlay, D.J., 2007, Atypical diagenetic effects on strontium-isotope composition of early Jurassic belemnites, Queen Charlotte Islands, British Columbia, Canada: Canadian Journal of Earth Sciences, v. 44, p. 181-197.
- Hover, V.C., Walter, L.M., and Peacor, D.R., 2001, Early marine diagenesis of biogenic aragonite and Mg-calcite: new constraints from high-resolution STEM and AEM analyses of modern platform carbonates: Chemical Geology, v. 175, p. 221-248.
- Hu, X., and Burdige, D.J., 2007, Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: evidence for coupled carbonate dissolution and reprecipitation: Geochimica Cosmochimica Acta, v. 71, p. 129-144.
- Lee, X., and Wan, G., 2000, No vital effect on  $\delta^{18}$ O and  $\delta^{13}$ C values of fossil brachiopod shells, middle Devonian of China: Geochimica et Cosmochimica Acta, v. 64, p. 2649-2664.
- Marshall, J.D., 1992, Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation: Geological Magazine, v. 129, p. 143-160.


- Nishioka, S., Arakawa, Y., and Kobayashi, Y., 1991, Strontium isotope profile of Carboniferous-Permian Akiyoshi Limestone in southwest Japan: Geochemical Journal, v. 25, p. 137-146.
- Patterson, W.P., and Walter, L.M., 1994, Syndepositional diagenesis of modern platform carbonates: evidence from isotopic and minor element data: Geology, v. 22, p. 127-130.
- Swart, P.K., and Eberli, G., 2005, The nature of the δ<sup>13</sup>C of periplatform sediments:
  implications for stratigraphy and the global carbon cycle: Sedimentary Geology,
  v. 175, p. 115-129.
- Tazawa, J.-I., 2007, Study of the Japanese Palaeozoic brachiopods: a historical review: Fossils, v. 81, p. 46-56.
- Veizer, J., 1989, Strontium isotopes in seawater through time: Annals Review Earth Planetary Sciences, v. 17, p. 141-167.
- Walter, L.M., Bischof, S.A., Patterson, W.P., and Lyons, T.W., 1993, Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry: Philosophical Transactions of the Royal Society of London, v. 344, p. 27-36.
- Walter, L.M., Ku, T.C.W., Muehlenbachs, K., Patterson, W.P., and Bonnell, L., 2007, Controls on the δ<sup>13</sup>C of dissolved inorganic carbon in marine pore waters: an integrated case study of isotope exchange during syndepositional recrystallization of biogenic carbonate sediments (South Florida, USA): Deep-Sea Research II, v. 54, p. 1163-1200.

Supplementary Figure DR1. Photomicrographs of microstructures in brachiopods (bLMC) from the Akiyoshi Terrane at Omi, Japan. A is representative of the microstructural destruction (obliteration) by diagenetic processes of the features in specimen OMI-374; recrystallized calcite has replaced the original material. B shows the two-layer structure in a well-preserved specimen (OMI-394) from the same horizon as OMI-374. The layers show good fibers of the secondary layer, and prisms of the tertiary layer. SEM scans were taken with an AMRAY 1500 scanning electron microscope.

Supplementary Figure DR2. Diagenetic evaluation of brachiopods (bLMC) and whole rock/matrix (mAC) from the Akiyoshi Terrane, Japan. Scatter diagrams show the distribution of trace elements, stable isotopes and Sr isotopes with progressive diagenetic alteration of original carbonate allochems. A shows the distribution of Sr and Mg contents of preserved brachiopods (bLMC; including OMI-394), altered brachiopods (including OMI-374) and corresponding whole rock/matrix (mAC). B shows the distribution of Mn and Fe with progressive diagenetic alteration. C shows the enrichment in lighter isotope in both the carbon and oxygen isotope values with diagenetic alteration. D shows the change in strontium isotope values with diagenesis, in this case of less radiogenic values in the microstructurally (Supp. Fig. 1) and chemically altered samples (cf. Brand, 1991; Gröcke et al., 2007).



Japan Supp Fig. 1



Japan Supp Fig. 2 Appendix: Table DR1. Geochemistry of Permian and Carboniferous brachiopods and associated whole rock (matrix) from the Mino and Akiyoshi Terranes, Japan, and Devonian from South China. Mineralogy (original): bLMC - biogenic low-Mg calcite, mAC - matrix (whole rock) Aragonite-Calcite. Sr isotope results adjusted to a mean value of 0.710247 relative to NBS 987. Samples in **BOLD** are deemed to represent pristine values, based on optical, microstructural (SEM) observations, trace element trends (Sr, Mn, Fe), and concurrence of isotope values.

| Sample #       | species/mineralogy                          | locale       | terrane  | age            | zone                 | Ca<br>ppm | Mg<br>ppm | Sr<br>ppm | Mn<br>ppm | Fe<br>ppm | $\delta^{13}$ Cc<br>‰ VPDB | $\delta^{18}$ Oc<br>‰ VPDB |  |
|----------------|---------------------------------------------|--------------|----------|----------------|----------------------|-----------|-----------|-----------|-----------|-----------|----------------------------|----------------------------|--|
|                |                                             |              |          |                |                      |           |           |           |           | ••        |                            |                            |  |
| MINIO3524-377m | whole rock/mAC                              | Akasaka      | Mino     | Kungurian      | Parafusulina         | 384482    | 14000     | 174       | 28        | 56        | 3.60                       | -4.93                      |  |
| -378           | Scacchinella gigantea/bLMC                  | AKASAKA<br>" | "        | "              | kaerimizensis        | 392467    | 14000     | 332       | 26        | 1         | 3.53                       | -4.93                      |  |
| -379           | "                                           |              |          |                | "                    | 392407    | 2014      | 329       | 20        | 5         | 3.50                       | -3.66                      |  |
| -380           | н                                           |              |          | н              |                      | 393233    | 1768      | 329       | 24        | 1         | 3.30                       | -4.07                      |  |
| -382           | <i>Scacchinella gigantea/</i> bLMC          |              |          | н              |                      | 396506    | 1614      | 331       | 29        | 1         | 3.74                       | -4.07                      |  |
| -383           | "                                           |              |          | н              |                      | 390154    | 1463      | 304       | 33        | 2         | 3.55                       | -3.41                      |  |
| -384m          | whole rock/mAC                              |              |          |                | н                    | 382788    | 23264     | 190       | 76        | 111       | 3.49                       | -5.14                      |  |
|                |                                             |              |          |                |                      |           |           |           |           |           |                            | 5.40                       |  |
| NV382-368      | Martinia sp./bLMC                           | Hiyomo       | Mino     | mid Artinskian | Parafusulina yabei   |           |           |           | 4 - 4     |           | 5.46                       | -5.12                      |  |
| NV-B88-369     | <i>Ledpidospirifer miyakei/</i> bLMC        |              |          |                | "                    | 392318    | 2434      | 449       | 156       | 102       | 3.39                       | -7.66                      |  |
| OMI474-376m    | whole rock/mAC                              | Omi          | Akiyoshi | Moscovian      | Fusulina-Fusulinella | 392593    | 2680      | 130       | 13        | 7         | 5.14                       | -3.57                      |  |
| -370           | <i>Isogramma millepunctata/</i> bLMC        |              | н        |                | biconica             |           |           |           |           |           | 5.71                       | -2.24                      |  |
| -371           | 11                                          |              | н        |                |                      | 389639    | 1538      | 244       | 12        | 9         | 5.71                       | -2.16                      |  |
| -375           | 11                                          |              | н        |                |                      | 390501    | 2261      | 116       | 11        | 17        | 5.16                       | -3.98                      |  |
| -372m          | whole rock/mAC                              |              | н        |                |                      | 388211    | 2427      | 147       | 19        | 71        | 4.85                       | -7.88                      |  |
| -373           | <i>Isogramma millepunctata/</i> bLMC        |              | н        |                |                      | 390895    | 1271      | 355       | 17        | 60        | 6.14                       | -3.19                      |  |
| -374           | u                                           |              |          |                | н                    | 390332    | 1527      | 308       | 18        | 53        | 5.85                       | -5.02                      |  |
| OMI473-390     | fine ribs, unid brach/bLMC                  | Omi          | Akiyoshi | Moscovian      | Fusulina-Fusulinella | 391083    | 2217      | 372       | 19        | 88        | 4.47                       | -7.22                      |  |
| -391           | smooth, unid brach/bLMC                     | н            | "        | п              | biconica             | 390537    | 2359      | 126       | 17        | 47        | 4.41                       | -5.29                      |  |
| -392           | Neospirifer sp./bLMC                        |              | н        | н              | н                    | 390618    | 819       | 337       | 5         | 49        | 5.44                       | -2.33                      |  |
| -393           | n                                           | н            | н        | п              | н                    | 395684    | 979       | 369       | 4         | 33        | 5.32                       | -1.63                      |  |
| -394           |                                             | н            | н        | н              |                      | 391856    | 790       | 371       | 8         | 34        | 5.42                       | -1.46                      |  |
| -395m          | whole rock/mAC                              |              | н        | н              |                      | 391919    | 2344      | 190       | 9         | 59        | 5.18                       | -4.60                      |  |
| -396           | Neospirifer sp./bLMC                        |              |          |                | н                    | 389859    | 741       | 362       | 10        | 29        | 5.49                       | -1.02                      |  |
| -400           | large dictyoclostus?/bLMC                   |              | н        | н              |                      | 390173    | 1153      | 364       | 12        | 34        | 6.45                       | -2.66                      |  |
| -401m          | whole rock/mAC                              |              |          |                | н                    | 389160    | 1923      | 137       | 14        | 40        | 5.44                       | -7.22                      |  |
|                |                                             |              |          |                |                      |           |           |           |           |           |                            |                            |  |
| OMI382-361     | <i>Gigantoproductus edelburgensis/</i> bLMC | Omi          | Akiyoshi | late Visean    | Mediocris breviscula | 387234    | 1683      | 160       | 28        | 144       | 3.42                       | -7.83                      |  |
| -362           | "                                           |              | "        |                |                      | 387391    | 1617      | 212       | 24        | 210       | 3.29                       | -8.61                      |  |
| -363           | н                                           |              |          |                | н                    | 386596    | 1597      | 145       | 23        | 102       | 3.33                       | -8.79                      |  |
| OMI 382-364    | н                                           |              |          |                |                      | 387592    | 2146      | 237       | 23        | 133       | 3.27                       | -4.32                      |  |
| -365           | н                                           |              | н        | н              | н                    | 387328    | 2223      | 269       | 23        | 134       | 3.60                       | -4.52                      |  |
| -366           | н                                           | н            | н        | н              |                      | 391217    | 1754      | 174       | 19        | 154       | 3.98                       | -5.53                      |  |
| OMI473-367     | Neospirifer sp./bLMC                        | н            |          |                |                      | 391370    | 1700      | 150       | 23        | 59        | 2.59                       | -11.35                     |  |
| AKI-4          | unid. brachiopod frag/bLMC                  | central      | Akiyoshi | late Visean    | "Uzura quarry"       | 394623    | 994       | 556       | 15        | 15        | 5.12                       | -2.68                      |  |
|                |                                             |              |          |                | "                    |           |           |           |           |           | 3.01                       |                            |  |
| -5             |                                             | Akiyoshi-    |          |                | н                    | 396147    | 1352      | 631       | 14        | 28        |                            | -3.34                      |  |
| -6             |                                             | dai          |          |                |                      | 397949    | 1560      | 606       | 22        | 59        | 5.79                       | -2.19                      |  |
| -7             | п                                           | Plateau      | н        | "              | н                    | 398625    | 1556      | 638       | 23        | 68        | 4.32                       | -2.44                      |  |
| -8m            | whole rock/mAC                              |              | н        |                | н                    | 391125    | 2819      | 202       | 11        | 34        | 4.32                       | -4.21                      |  |
| -10            | unid. brachiopod frag/bLMC                  |              | н        |                |                      | 391579    | 1561      | 602       | 10        | 47        | 5.02                       | -3.36                      |  |
| -11            |                                             |              | н        |                | н                    | 389118    | 1390      | 650       | 14        | 58        | 5.55                       | -2.79                      |  |
| -12            | п                                           |              |          |                | н                    | 393478    | 1410      | 561       | 23        | 31        | 5.69                       | -2.45                      |  |
|                |                                             |              |          |                |                      |           |           |           |           |           |                            |                            |  |
| C-19           | Independatrypa lemma chen/bLMC              |              | South    | mid-late       | Strata 120           | 396319    | 693       | 498       | 41        | 127       | -3.97                      | 4.22                       |  |

<sup>87</sup>Sr/<sup>86</sup>Sr

0.707324

0.707298 0.707274

0.707500

0.707919 0.708193

0.700170

0.707938

0.708155

0.708151

0.708187

0.707998

0.707805 0.707810

0.708101

0.707911

0.708133

0.708081

0.707767

| C-21 <b>(part)</b> | Desquamatia subspherica xian/bLMC | China | Givetian | Strata 124 | 395090 | 2890 | 1099 | 21 | 86 | -4.83 | 0.20 |
|--------------------|-----------------------------------|-------|----------|------------|--------|------|------|----|----|-------|------|
|                    |                                   |       |          |            |        |      |      |    |    |       |      |

0.707791