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Methods & sample characteristics:  
We used a Leica TCR407power total station linked to an iPAQ computer running 

Microsurvey FieldGenius software to survey the site, including both breaklines along the edges 
of the main topographic features and topographic control points within the areas bounded by the 
breaklines.  Following the survey, we excavated 1-2 m deep pits and collected radiocarbon 
samples that we stored in airtight containers until the end of fieldwork.  We dug a total of 13 pits, 
8 of which yielded a total of 35 dateable samples.  On the T4 surface, 3 pits south of the fault 
yielded 22 dateable samples and 2 pits north of the fault were barren.  On the T3 surface we dug 
6 pits (3 upstream, 3 downstream) in loess deposits at the base of the T4/T3 riser and found 6 
dateable samples.  Two pits on T2 yielded 7 dateable samples.  We excavated the pits at the riser 
bases on T3 and T2 (i.e., in the distal portions of the apron of loess and colluvium) to both ensure 
that our hand-dug and unsupported pits would expose the buried terrace tread and minimize the 
risk of either confusing colluvial layers with the underlying terrace or sampling organic material 
recycled from the overlying terrace.  We did not analyze a suite of samples collected from T4 for 
exposure-age dating due to extensive loess cover.  Before leaving the site, Cowgill mapped the 
area on  ~1:5,000-scale stereo prints made from 7 micron scans of Corona images with ~1.8m 
ground resolution. 

Samples collected for 14C analysis were primarily woody plant fragments but also 
included charcoal and dung.  The absence of animal burrows on the modern surface and the 
presence of undisrupted fine layering within the loess deposits both at the riser bases and on the 
terraces attest to minimal disturbance of the loess after burial of the organic material.  Most 
samples were under 1 cm in diameter and very friable.  The dung was identified based on 
elliptical shapes and powdery/fibrous texture.  The woody fragments had shapes and textures 
similar to dead branches on modern plants in the area.  These plants typically form the tops of 5-
10 cm tall loess mounds, with dead branches commonly buried in the apron of sediment 
surrounding the plant.  Thus, the plants appear to trap loess, with dead branches becoming buried 
as the plant grows up through the accreting sediment.  This depositional model explains why the 
bulk of the sampled material was woody plant fragments.  We conducted mechanical and 
chemical pretreatment of the samples at UC Davis following procedures described by Olsson 
(1986).  At the W.M. Keck Carbon Cycle Accelerator Mass Spectrometry Laboratory 
(KCCAMS) at UC Irvine, we combusted the samples, extracted CO2 gas, graphitized the 
samples, and packed targets prior to analysis.  We processed samples of radiocarbon-dead wood 
and FIRI D and FIRI H standards with the unknowns. 

Supplementary field observations:  
Yuemake is located west of the left-stepping Akato Tagh restraining bend (Fig. DR1), the 

bedrock and neotectonic geology of which are described by Cowgill et al., (2004b) and Cowgill 
et al, (2004a), respectively.  To the east of Yuemake channel, the ATF defines the northern 
margin of a bedrock range, and to the west it cuts a flight of alluvial terraces before crossing a 
fault-parallel ridge (Figs. DR2 and DR3).  Holocene surface rupture of the ATF has been 
documented along this reach (Ge et al., 1992) and to both the west (Muretta et al., 2007) and east 
(Washburn et al., 2003; Washburn et al., 2001).  Evidence at the site includes internally drained 
depressions along the fault, an uphill-facing fault scarp on T4, and channels on the east bank that 
are beheaded and/or left-deflected where they cross the fault (Fig. DR3A).   

The fluvial terraces and their intervening risers are well-defined on the west bank, with 
the T4/T3 riser and flanking T4 and T3 terraces present both north and south of the fault (Figs. 2 
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and DR2-DR3).  The T4/T3 riser crest is ~6 and ~14 m above the T3 surface and active channel, 
respectively.  North of the fault, the riser is straight in plan view to within a few meters of the 
fault (Fig. DR3).  To the south it terminates ~15 m from the fault, with the northernmost ~10 m 
section of the riser trending more westerly than sections farther south (Fig. DR3).  This riser is 
truncated to the north by a north-facing scarp along the ATF.  This scarp is both hummocky and 
cut by a tectonic furrow, indicating it as a minor slump formed by collapse of the free face of the 
T4 terrace into the modern drainage along the fault scarp (Figs. DR3 and DR4A).   
 The main riser faces are asymmetric in profile view, with steeper slopes at the crest than 
the base (Fig. DR4B).  Conglomerates exposed at the riser crests are buried by laminated sand 
and loess at the base.  Excavations at the bases of the T4/T3 and T3/T2 risers indicate that these 
fine-grained deposits extend 1-1.5 m below the modern surface and depositionally overly the 
flat-lying, cobbled surfaces of the T3 and T2 terraces.  We interpret the fine-grained deposits to 
primarily reflect in situ accumulation of loess in the lee of the riser with minor reworking of 
material from the loess cap on the overlying terrace tread.  Because these units depositionally 
overly both the face of the terrace riser and the lower terrace tread, they post-date fluvial 
abandonment of the riser.  Therefore, radiocarbon samples within these deposits provide a 
minimum bound on the riser age.   

With the exception of the active channel (T0 and T0’), all terrace surfaces are blanketed 
by deposits of loess and fine sand up to 2 m thick (Fig. DR4).  Cutbank exposures south of the 
fault indicate T3 is a strath terrace, with up to ~1 m of stratified conglomerate and pebbly sands 
unconformably overlying fractured schist (Fig. DR4C).  Bedrock is also exposed within the 
active drainage (T0-T0’), ~200 m south of the fault.  However, it is unclear if other terraces in 
the area are straths.   

The T4 and T3 terrace surfaces on the west bank of the Yuemake channel and north of 
the fault are bowed vertically upwards by several meters within ~100 m of the fault, with higher 
terraces most strongly arched.  Two types of discontinuous, ~1 m high secondary scarps are 
spatially associated with the crests of the main T4/T3 and T3/(T2-T1) risers.  The first are fluvial 
risers that only occur north of the fault.  The second lie above the main riser crest in areas where 
the treads are overlain by post-abandonment loess deposits and are defined by slope breaks in the 
loess.  At least three older/higher terraces (T5-T7) are also present at Yuemake (Fig. DR3A).  
Although Cowgill et al., (2004a) mapped a secondary fault along these northwest-facing scarps 
based on analysis of Corona imagery, our more recent field observations indicate that these 
scarps are simply older fluvial terrace risers.         

Additional discussion of Holocene displacement:  
We used the T4/T3 riser crest to determine displacement because the midpoint was 

obscured by loess (e.g., Fig. DR4B).  When projecting the riser (Figs. 2 and DR3B) we ignored 
the curved riser segment that is ~10 m long at the north end of the southern riser, which we 
attribute to local drainage deflection prior to T3 abandonment.  Inclusion of this segment would 
lower the total offset and thus reduce the slip rate.  More northerly trending riser projections 
leading to larger total offset and thus faster rates are not supported by the survey data and site 
geomorphology (Fig. DR3c).  Such projections do not follow the riser crest or any other 
topographic feature within the riser.  In addition, they do not mimic the margins of the modern 
flood plain (e.g., T0/T1 riser) in terms of the amplitude and wavelength of riser sinuosity or 
overall riser trend direction.  The projections we show span the range of riser trends seen along 
T3/T4 north of the fault and along other risers at the site.  Thus, restoration of fault slip returns 
the projected riser to a geometry that match patterns seen elsewhere at the site, both along other 
portions of the T3/T4 riser and along other risers.   
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The total slip of 54±5 m recorded by the T4/T3 riser is broadly similar to a less-precise 
offset determination derived from reconstructing the T4 terrace surface.  Because this surface 
slopes oblique to the fault trace, sinistral  displacement along the fault has juxtaposed higher 
elevations on the T4 terrace to the north against lower elevations  to the south, producing the 
uphill-facing fault scarp and systematic left steps in the topographic contours where they cross 
the fault trace (Figs. 2 and DR3B).  These steps can be used to estimate total slip since T4 
abandonment.  Specifically, ~64 m of pure left slip restores the jog in the 950 m contour line  
However, this total slip measurement is less accurate than that based on the riser because it 
presumes that separation of the T4 topographic surface was only due to strike-slip displacement 
and does not account for changes in T4 elevation due to erosion, loess accumulation, or 
deformation.     

Details regarding 14C results:   
Table DR1 reports results of 40 radiocarbon analyses, including 35 unknowns and 5 

replicates to check reproducibility.  The 35 unknowns comprise 28 from the T3 and T4 terraces 
to bracket the T4/T3 riser age and 7 from T2, to test for stratigraphic order.  Results are plotted 
in Figures 2 and DR5.  Analyses are standard accelerator mass spectrometer (AMS) 
measurements made at KCCAMS.  Radiocarbon concentrations are given as fractions of the 
Modern standard, D14C, and conventional radiocarbon age, following conventions of Stuiver and 
Polach (1977).  All results have been corrected for isotopic fractionation according to the 
conventions of Stuiver and Polach (1977), with δ13C values measured on prepared graphite using 
the accelerator mass spectrometer. These can differ from δ 13C of the original material, if 
fractionation occurred during sample graphitization or AMS measurement, and are not shown.   

We calibrated calendar dates using OxCal v.4.0.1 (Bronk Ramsey, 1995, 2001) and the 
IntCal04 (Reimer et al., 2004) atmospheric calibration curve.  Age ranges are reported at 2σ and 
are plotted on the age-depth plots (Figs. 2 and DR5) as bars spanning the total 2σ range of the 
probability density function for the calibrated age.  Because the thickness of the post-
abandonment loess varies between excavations, we normalized sample depths by the total 
thickness of loess in each pit.  This approach assumes that loess thickness variations stem from 
spatial variations in accumulation rate, and that deposition at each pit was either uniform over 
time, or that temporal variations affected all pits uniformly.  The samples generally plot in 
correct stratigraphic order, supporting this assumption.  

Details of Slip Rate Calculations:  
Numerous studies have discussed methods for combining age and offset measurements 

from displaced fluvial risers to determine slip rates (Cowgill, 2007; England and Molnar, 2005; 
Harkins and Kirby, 2008; Mériaux et al., 2004; Mériaux et al., 2005; Van der Woerd et al., 1998; 
Van der Woerd et al., 2002; Zhang et al., 2007).  We used the most conservative approach by 
accounting for the full range of possible riser ages (Cowgill, 2007).  In particular, we use the 
abandonment ages of both the lower (T3) and upper (T4) terraces to bracket the age of riser 
formation and thus place maximum and minimum bounds on the slip rate, respectively.  We 
calculated uncertainties on these bounding rates by propagating the uncertainties in the 
displacement and terrace abandonment ages as the square-root of the sum of the squares, 
normalizing each uncertainty by the mean value.  The upper bound on the rate is a true maximum 
because we have bracketed the T3 abandonment age.  The true minimum rate could be lower 
than 9.4±0.9 mm/yr if abandonment of T4 and formation of the T4/T3 riser significantly 
predated the oldest 14C samples contained within the T4 loess cap. 
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A

B

C

Figure DR1. (a)  Map of the Indo-Asian collision showing major and minor faults based on compilation of 
Taylor et al. (2003) with additions from previous work (Cowgill et al., 2004b; Lacassin et al., 2004; Mériaux 
et al., 2004; Mériaux et al., 2005; Murphy and Burgess, 2006; Peltzer et al., 1989; Tapponnier et al., 2001; 
Thatcher, 2007; Yin et al., 2007).  (b) Location along the central ATF of the Yuemake site, previous slip-rate 
studies (Bendick et al., 2000; Cowgill, 2007; Gold et al., in press; Mériaux et al., 2004; Mériaux et al., 2005; 
Wallace et al., 2004; Washburn et al., 2003; Washburn et al., 2001) and GPS benchmarks (Chen et al., 2004; 
Shen et al., 2001; Zhang et al., 2004).  (c) Comparison of Altyn Tagh (after Liu, 1988) and San Andreas 
(after Dickinson, 1996) fault systems at same scale. 
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Figure DR2.  Corona stereopairs showing the Yuemake site.  Both overview (top) and detailed (bottom) 
views are shown.  Arrowheads at top and bottom of each image point along the active trace of the ATF.  
Scenes are not georeferenced or rectified, thus scale bars and orientations are both approximate.  Images 
were taken November 6, 1968 by the Corona program (http://www.nro.gov/corona/facts.html) and were 
obtained from the United States Geological Survey Earth Resources Observation and Science (EROS) Data 
Center (http://edc.usgs.gov/ ).  Scene identification numbers are DS1105-1039F146 and DS1105-1039A152 
for the forward and aft scenes, respectively.
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Figure DR3 (this page and previous). (a)  Neotectonic map of Yuemake.  Riser crests and bases are shown 
as dotted and dashed black lines, respectively, except for T4/T3 crest (solid blue line).  Box outlines area of 
survey shown in part b and Fig. 2.  (b)  Survey data used to generate Fig. 2, including survey points (dots), 
breaklines (black and colored lines), and topographic contours.  Riser crests are shown as solid, undecorated, 
colored lines.  Thin red lines along crest of T4/T3 riser show range of possible projections into fault trace, 
with box indicating ±5 m uncertainty in displacement measurement.  Stars labeled “CosmoPit” denote 
locations of depth profiles sampled, but not analyzed, for terrestrial cosmogenic nuclide (TCN) work.  (c)  
Detailed view of survey data and site map showing fault trace, displaced riser crests and projections of the 
riser crests.
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Figure DR4.  Photos of key field relations; red circles indicate person for scale.  (a) View to  west-southwest 
of the ATF (red line) and displaced fluvial terraces along the west bank of the Yuemake channel.  Red band 
indicates fault scarp.  Black lines indicate crests of terrace risers with ticks on riser face.  Ticked red line 
indicates approximate position of headwall of slump along ATF scarp.  (b) View to north-northwest showing 
the profile of the T4/T3 fluvial riser north of the ATF.  Riser face is asymmetric, with a steeper slope at the 
crest than the base.  (c) View to west-southwest of the T3/T0 riser along the west bank of the Yuemake 
channel indicating that the T3 terrace is a strath cut into bedrock schist  with ~1 m of fluvial conglomerate.  
The terrace is capped by ~1-2 m of loess deposited after tread abandonment.

p. 10Cowgill et al.



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Fr
ac

tio
na

l d
ep

th

0 1 2 3
Calibrated date (cal ka B.P.)

02

05

T2 abandonment bracketed
by oldest sample in cover

and youngest sample in tread

pit T2NA 
 (young)

T2 tread age
pit T2NA
pit T2NB

01

04

02v1
02v2

01

03a & 03b

TOP OF TREAD

N
A 

= 
14

6 
cm

N
B

 =
 1

37
 c

m

vertical root in
growth position

P
os

t-a
ba

nd
on

m
en

t
sa

nd
/lo

es
s 

ca
p

Tr
ea

d

Figure DR5.  Calibrated 14C dates (2σ) as a function of fractional depth into the terrace for T2.  Fractional 
depth = 1 indicates the top of the abandoned terrace.  Samples with fractional depth > 1.0 were collected 
from within the tread conglomerate and thus predate the time of tread abandonment.  Samples with fractional 
depths < 1.0 were collected from within the post-abandonment capping loess deposit and thus postdate tread 
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