Barnes, 1

DATA REPOSITORY ITEM DR2008226

2 A highly detailed summary of sample preparation and analytical methods can be found in Barnes and Sharp (2006) and Sharp et al. (2007). Here we present the basic 3 4 preparation and analytical procedures. Amendments to previous procedures due to 5 differences in sample material are also discussed below. 6 Chloride concentration 7 Well-lithified sediments and serpentinite clasts were sonicated in $18M\Omega$ 8 deionized water to remove seawater and surficial contamination. Subsequent to rinsing 9 to remove contamination, samples were dried, powdered to <100 mesh (<0.149 mm) and 10 leached in $18M\Omega$ deionized water for 24 hours to extract water-soluble chloride. Poorly-11 lithified serpentine mud and sediments samples were rinsed to remove contamination, 12 crushed in the presence of $18M\Omega$ deionized water, and then leached. Samples were 13 filtered and the extracted solutions were analyzed for Cl⁻ concentration on the Dionex 14 DX-100 Ion Chromatograph (minimum detection limit for CI = 0.22 ppm). The leached 15 powders were dried, pressed into a pellet, and analyzed for the Cl⁻ concentration of the 16 structurally bound chloride component on the Rigaku RIX 2100 wavelength dispersive X-ray 17 spectrometer (minimum detection limit for $Cl^2 = 10$ ppm). Note that one sediment sample 18 (185-1149A-7H-1, Table 1) was washed 15 times for 15 minutes each time, instead of the 19 standard 4 times, in an ultra-sonic bath to check if all water-soluble chloride was removed and the structurally bound chloride measurement did not reflect a water-soluble 20 chloride component. No difference in the δ^{37} Cl value was obtained using this extreme 21 22 rinsing procedure indicating that our normal leaching and filtering procedure effectively 23 removes all water-soluble chloride.

Barnes, 2

24 Stable chlorine isotope analyses

25	Cl ⁻ was released from powdered rock/ash samples by pyrohydrolysis and
26	collected in an aqueous solution (Magenheim et al., 1994; Barnes and Sharp, 2006).
27	Once in an aqueous form Cl ⁻ is converted to AgCl and reacted with CH ₃ I to produce
28	CH ₃ Cl (Eggenkamp, 1994). CH ₃ Cl is purified on a gas chromatographic column and
29	introduced into a gas source mass spectrometer (Finnigan Delta XL Plus) (Barnes and
30	Sharp, 2006). Volcanic gases trapped in Giggenbach bottles were prepared following the
31	method of Eggenkamp (1994). In order to ensure removal of the high concentration of
32	sulfur prior to addition of AgNO ₃ in volcanic materials and some sediment samples,
33	samples were reacted with 10 mL 50% nitric acid at low heat for 2 hours under a watch
34	glass filled with $18M\Omega$ deionized water to drive off excess sulfur as SO ₂ . Samples with
35	high concentrations of Cl ⁻ were analyzed using the dual inlet method and have an error of
36	$\pm 0.12\%$; samples with low concentrations of Cl ⁻ were analyzed using the continuous
37	flow method and have an error of $\pm 0.37\%$ based on the long-term average of laboratory
38	samples.
39	

40 ONLINE SUPPLEMENTAL REFERENCES

41	Barnes, J.D., and Sharp, Z.D., 2006, A chlorine isotope study of DSDP/ODP							
42	serpentinized ultramafic rocks: insights into the serpentinization process:							
43	Chemical Geology, v. 228, p. 246-265.							
11	Bonifacia M. Jandrzejewski, N. Agrinier, P. Coleman, M. Dinegu, F. and Javo							

- Bonifacie, M., Jendrzejewski, N., Agrinier, P., Coleman, M., Pineau, F., and Javoy, M.,
 2007, Pyrohydrolysis-IRMS determination of silicate chlorine stable isotope
 compositions. Application to oceanic crust and meteorite samples: Chemical
 Geology, v. 242, p. 187-201.
- 48 Eggenkamp, H.G.M., 1994, The geochemistry of chlorine isotopes. [Ph.D. thesis],
 49 Universiteit Utrecht.
- Fryer, P., Pearce, J.A., Stokking, L.B., et al., 1990. Proc. ODP, Init. Repts., 125: College
 Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.125.1990.
- 52 Magenheim, A.J., Spivack, A.J., Volpe, C., and Ransom, B., 1994, Precise determination

53	of stable chlorine isotopic ratios in low-concentration natural samples:
54	Geochimica et Cosmochimica Acta, v. 58, p. 3117-3121.
55	Salisbury, M.H., Shinohara, M. Richter, C., et al., 2002. Proc. ODP, Init. Repts., 195:
56	College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.195.2002.
57	Sharp, Z.D., Barnes, J.D., Brearley, A.J., Chaussidon, M., Fischer, T.P., and Kamenetsky,
58	V.S., 2007, Chlorine isotope homogeneity of the mantle, crust and carbonaceous
59	chondrites: Nature, v. 446, p. 1062-1065.
60	Wei, W., Kastner, M., and Spivack., A., 2008, Chlorine stable isotopes and halogen
61	concentrations in convergent margins with implications for the Cl isotopes cycle
62	in the ocean: Earth and Planetary Science Letters, v. 266, p. 90-104.
63	
64	
65	

- 66 67

Sample	Lithology*	Depth	Cl _{wsc}	Cl _{SBC}	$\delta^{37} CI_{WSC}^{\dagger}$	$\delta^{37} \text{Cl}_{\text{SBC}}^{\dagger}$	
(Leg-Hole-Core(type)-	6,	(mbsf)	(wt%)	(ppm)	(‰)	(‰)	
Section, Interval(cm))		()	()	,	()	()	
Seafloor sediments							
129-800A-4R-3, 16-20	pelagic clay	23.36	1.11	115	-0.29	0.26 [§]	
	1					0.32	
129-800A-53R-1, 14-21	clayey radiolarite	465.04	0.36	246	-1.13	-1.93	
					-1.06		
					-0.97		
129-801A-7R-1, 101-106	pelagic clay with zeolites	60.01	1.26	529	-0.66	-1.51	
129-801B-1R-5, 18-22	volcanoclastic sandstone/silty claystone	200.18	0.61	N.D. [#]	-0.78	N.D.	
129-801B-33R-1, 1-7	radiolarite/claystone	442.81	0.35	365	-1.26	-2.51	
					-1.07		
129-802A-3R-1, 15-20	tuff and pelagic clay	14.75	0.39	872	-0.31	-0.86	
129-802A-38R-1, 10-15	zeolitic pelagic claystone	339.30	0.54	151	-1.01	-0.65	
129-802A-42R-2, 11-16	volcanoclastic turbidite/claystone	374.29	0.35	204	-1.57	-0.65	
185-1149A-7H-1, 16-20	ash-bearing siliceous clay	51.86	1.89	624	-0.43	-0.59	
						-0.81**	
185-1149A-18H-1, 16-20	clay	156.36	0.87	1240	-0.92	-1.35	
185-1149B-3R-1, 10-12	clay	170.40	1.15	514	-0.54	-0.75	
						-0.36	
185-1149B-20R-1, 17-22	radiolarian chert/porcellanite/marlstone	321.07	0.37	36	-0.93	-1.11	
Sediments overlying Torishim	na seamount						
125-783A-4R-4, 10-12	glass & nannofossil-rich silty clay	30.60	1.82	544	-0.26	-1.47	
125-784A-16R-1, 10-12	glass-rich claystone	136.10	1.75	440	-0.29	-0.71	
*Lithology descriptions from Fryer et al., 1990, Lancelot et al., 1990, and Plank et al., 2000.							
[†] WSC = water-soluble chloride. SBC = structurally bound chloride.							
§Italicized data were determ	nined using the continuous flow method (error	= ± 0.37‰).	Error on a	ll other and	alyses = ± 0.	12‰.	

TABLE DR1. CHLORINE CONCENTRATION AND ISOTOPIC DATA FOR SEDIMENTS

[#]N.D. = not determined. Sample lost during the filtering process.

**Repeat analysis on sample that was washed in 18MΩ deionized water 15 times.

Sample	Lithology*	Depth	Cl _{WSC}	CI _{SBC}	$\delta^{37}CI_{WSC}$	$\delta^{37}CI_{SBC}$
(Leg-Hole-Core(type)-		(mbsf)	(wt%)	(ppm)	(‰)	(‰)
Section, Interval(cm))			. ,			
Conical seamount						
Serpentine mud						
125-779A-2R-2, 74-76	aragonite-bearing sandy silt-sized serpentine	3.34	1.16	326	0.05	0.24
125-780B-1R-2, 130-132	silty sand-sized serpentine	2.80	1.06	319	0.13	0.15
125-780C-2R-1, 28-30	silty sand-sized serpentine	5.78	0.70	261	0.20	0.45
Serpentinite clast						
125-779A-3R-CC, 9-13	serpentinized harzburgite (85%)	10.69	0.09	426	0.26	0.64
					0.16	
125-779A-8R-1, 20-23	serpentinized harzburgite (100%)	58.70	0.14	147	1.02	-0.22
					0.15	
					0.68	
125-779A-11R-1, 8-12	serpentinized harzburgite (90-99%)	87.38	0.15	341	-0.03	0.28
						0.49
125-779A-15R-2, 22-27	serpentinized dunite (50-80%)	127.62	0.15	238	0.50	0.38
125-779A-20R-1, 2-5	serpentinized harzburgite (90-99%)	169.12	0.06	253	-0.10	0.12
					-0.07	
125-779A-24R-1, 34-38	serpentinized dunite (100%)	187.54	0.18	221	0.36	0.36
125-779A-28R-3, 100-104	serpentinized dunite (100%)	228.97	0.24	320	0.20	0.02
125-779A-32R-1, 27-30	serpentinized dunite (100%)	264.67	0.07	225	0.62	0.30
		004.05	0.00	045	0.44	0.47
125-779A-35R-1, 75-78	serpentinized harzburgite (70%)	294.05	0.08	315	0.37	0.47
					0.42	
South Chamorro seamount						
Serpentine mud						
195-1200D-2H-1, 85-87	silty clay serpentine	7.75	0.58	511	0.09	0.57
195-1200D-8H-1, 110-112	silty clay serpentine	26.10	0.60	262	0.07	0.13
Serpentinite clast	5 5 1					
195-1200A-2R-1, 0-4	serpentinized harzburgite (99%)	9.70	0.15	177	0.21	1.61
195-1200A-6R-1, 4-7	serpentinized harzburgite (75-85%)	41.44	0.13	420	0.17	0.79
195-1200A-10R-1, 34-36	serpentinized harzburgite (99%)	80.24	0.07	402	0.03	0.51

TABLE DR2. CHLORINE CONCENTRATION AND ISOTOPIC DATA FOR SERPENTINE SEAMOUNT MATERIAL

195-1200A-13R-1, 46-48	serpentinized harzburgite (98%)	109.16	0.03	398	-0.27 -0.37	0.59
195-1200A-13R-2,16-19	serpentinized harzburgite (80-99%)	110.11	0.15	350	0.08	0.52 0.36
195-1200A-16R-1, 50-53	serpentinized harzburgite (99%)	138.10	0.15	390	0.16	1.54
195-1200A-17G-2, 46-48	serpentinite (99%)	N.R.	0.09	365	0.23	0.38
Torishima seamount						
Serpentine mud						
125-783A-15R-1, 12-14	silt-sized serpentine	129.72	0.24	409	-0.04	N.D.
Serpentinite clast						
125-783A-18R-1, 99-101	serpentinized tectonized harzburgite (70-90%)	159.59	0.07	745	-0.13	-0.03
125-784A-36R-1, 90-92	serpentinized harzburgite (80-90%)	329.90	0.44	5194 5298	0.14	0.49
125-784A-45R-1, 89-91	serpentinized tectonized harzburgite (80-99%)	416.49	0.09	611	0.66 0.60	0.29

Note: Extremely high δ^{37} Cl values measured for serpentinite samples from the same seamounts (Wei et al., 2008) are most likely erroneous, having been analyzed with a technique that is known to have serious analytical artifacts (Bonifacie et al., 2007; Sharp et al., 2007).

*Lithology descriptions from Leg 195 Initial Reports, Core Descriptions. Percentage serpentinization noted in parentheses.

[†]N.R. = not reported. Sample from a ghost core (recovered interval of no new penetration because of hole collapse or fill).

N.D. = not determined.

Sample	Island	Latitude/Longitude	Description	T (°C)	δ ³⁷ Cl _{bulk} (‰)
Volcanic gas and	geothermal well sar	nples			
Sou-1	Hakone	35º14.492'N/139º01.925'E	volcanic gas	96.1	-5.41*
					-3.18
Sou-2	Hakone	35º14.492'N/139º01.925'E	volcanic gas	96.1	-2.52
Owa-1	Hakone	35º14.488'N/139º01.230'E	volcanic gas	96.5	-0.94
Noh-1	Hakone	35º13.442'N/139º01.948'E	volcanic gas	95.8	-2.70
Uto-1	Oshima	34º45.243'N/139º24.125'E	volcanic gas	81.0	-2.04
Jin-1	Shikinejima	34º19.128'N/139º12.882'E	volcanic gas	66.2	-0.94
Geo-1	Hachijojima	33º04.494'N/139º48.742'E	geothermal well	170.8	-2.25
Aog-2	Aogoshima	32º27.136'N/139º45.735'E	volcanic gas	99.2	-1.44
Aog-3	Aogoshima	32º27.435'N/139º45.717'E	volcanic gas	99.4	-1.41
MAR05-4	Uracas	20º32.748'N/144º53.475'E	volcanic gas	144.0	-0.80
					-0.06
MAR05-5	Uracas	20º32.748'N/144º53.475'E	volcanic gas	144.0	2.59 [†]
					-0.37
					-0.20
MAR7	Agrigan	18º46.694'N/145º40.282'E	volcanic gas	98.0	-1.93
MAR3	Pagan	18º04.265'N/145º40.498'E	volcanic gas	96.1	-1.72
Volcanic ash and	lava samples				
Osh-02	Oshima	34º47.825'N/139º21.652'E	beach sand		-0.46
Mih-1	Oshima	34º43.987'N/139º23.135'E	lava		-0.28
Niij-4	Niijima	34º25.517'N/139º16.901'E	pyroclastic surge deposit		-0.77
Hac-09	Hachijojima	33º04.756'N/139º51.444'E	scoria and ash		-0.22
Hac-03	Hachijojima	33º06.154'N/139º47.128'E	ash		-1.05
Aog-6	Aogoshima	32º27.992'N/139º45.303'E	scoria and ash		-0.57
Urac05	Uracas	20°32.522'N/144°53.993'E	ash		-1.46
04-Maug-03	Maug	20°1.487'N/145°13.892'E	beach sand		0.01
Asun-20-02	Asuncion	19º41.339'N/145º23.440'E	ash		-0.47
Agri-19-02	Agrigan	18º44.352'N/145º41.193'E	scoria/lapilli		-0.10
04-Pag-11	Pagan	18º9.193'N/145º46.576'E	olivine-plagioclase clasts		-2.56

TABLE DR3. CHLORINE ISOTOPE DATA FOR VOLCANIC MATERIALS

				-1.77			
Ala-02	Alamagan	17º35.183'N/145º50.285'E	scoria	-0.23			
04-Gug-11	Guguan	17º18.008'N/145º50.308'E	scoria	-0.76			
Ū	U U			-0.16			
Sari-15-02	Sarigan	16º42.371'N/145º46.026'E	scoria	-1.11			
04-Ana-04-3	Anatahan	16º20.358'N/145º38.426'E	scoria	0.01			
Anat05-01	Anatahan	16º20.409'N/145º41.748'E	ash	0.38			
Basalt samples from the Guguan cross-chain							
D50-1-1	-			0.47			
D48-1-3				0.02			
D46-1-5				0.19			
Note: When two analyses for the same sample were determined only the average value was plotted.							
*Italicized data were determined using the continuous flow method.							
[†] Outlier and not incl	[†] Outlier and not included in average calculations (Fig.3).						