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Appendix A: Evaluating errors in Balanced cross sections 1 

 2 

Orogen-scale balanced cross sections are the only tool available for obtaining 3 

quantified estimates of shortening. However the purpose of balanced cross sections, to 4 

find a solution that is the best fit to the available data, does not easily lend itself to 5 

quantifying errors on that solution.  A popular solution to this problem, combining all 6 

available estimates, magnifies errors by combining estimates with different geographical 7 

boundaries and/or different assumptions or equally weighting estimates that are not 8 

balanced.  For our purpose, the most critical data for determining the magnitude of 9 

shortening is the amount of shortening required by exposed surface structures. The 10 

central Andes are probably one of the best regions to produce a tightly constrained 11 

balanced section because the thick Paleozoic stratigraphy is still preserved over the entire 12 

orogen and most of the faults preserve hanging wall cut-offs (in the line of section or 13 

along strike) greatly limiting large variations in shortening magnitude. To help evaluate 14 

the potential error in shortening estimates though Bolivia, we identified 6 locations in the 15 

southern section and 4 in the northern section where eroded hanging wall cut-offs 16 

indicate regions in which fault displacement is not explicitly known. Although 17 

theoretically shortening along faults where the hanging wall cut off is missing is an 18 

unknown, changing the magnitude of displacement on an individual thrust must be 19 

accompanied by changes in the subsurface geometry in a way that the section still 20 

balances. In Figure 3 we have identified structures where additional or less slip is 21 

permissible at the surface, but have not tested the subsurface implications of different 22 

displacements.  Along the southern cross section there are 6 thrusts that have 3-8 km of 23 

displacement between the modern day erosion surface and their respective hanging wall 24 

cut-offs (Fig. 3).  This material could be viewed as potential “extra” shortening.  The 25 

cumulative amount of “extra” displacement is 32 km, roughly 10% of the 326 km of total 26 

shortening.  Subtracting 32 km from the total shortening amount, shortening in the 27 

southern section could be as low as 294 km or 35% (Table 1).  In the north there are 4 28 

thrusts in which the hanging wall cut-off has been eroded and where additional slip could 29 

be accommodated.  Assuming the magnitude of extra slip on each fault is similar to what 30 

was calculated in the south, we estimate 25 km of additional slip or ~10% of the 276 km 31 

of total shortening. Adding 25 km to the total shortening amount suggests shortening in 32 
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 2 

the northern section could be as high as 301 km or 42% (Table 1). Our error evaluation 33 

highlights two important points: (1) a reasonable error estimate in our balanced section is 34 

~10%, and (2) given this amount of error, it is not possible to tell if propagation has been 35 

limited by erosion or not, suggesting the need for additional shortening and exhumation 36 

estimates.  These estimate are discussed in the accompanying manuscript where we 37 

comparing shortening estimates between the balanced section and cross sectional area 38 

(Fig. 4), as well as compare predicted magnitudes of exhumation to exhumation estimates 39 

from thermochronometers (Table 2). 40 

 41 

 42 

Appendix B: Comparing calculated and predicted changes in orogen width. 43 

 44 

 Whipple and Meade (2004) used critical taper theory, the assumption of steady 45 

state topography and stream power fluvial incision models (e.g. Whipple and Tucker, 46 

1999) to relate orogen width to erosional fluxes from the orogen due to precipitation 47 

gradients. For fixed influx and sediment recycling they found: 48 

 49 

(4)   W2 = (tan 2) 
-(0.25-1.82) (K2 )

-(0.37-0.93)
 50 

W1     (tan 1)             (K1) 51 

  52 

Where W is orogen width,  is the taper angle of mean topography, K is a coefficient of 53 

erosion and represents the factor of 2 difference in the erosivity from north to south (due 54 

to precipitation), and exponents are typical values of erosion parameters specified in 55 

Whipple and Meade (2004). Using  (0.75-1 and 1.25-2) and K (1 and 2) appropriate to 56 

southern and northern Bolivia (respectively), analytical models (Whipple and Meade, 57 

2004, 2006), assuming uniform precipitation, predict a 35%-80% reduction in orogen 58 

width.  59 

The original equations outlined by Whipple and Meade (2004) assume a steady-60 

state configuration of the orogen in response to different climate forcings, rather than the 61 

transient response of the orogen to the changing climate as we suggest in this paper. 62 

 Nevertheless, application of the steady-state approach to the previously discussed 63 

geometries and magnitudes of climate change provides a first order comparison between 64 

analytical models and our results.  Our calculations suggest that the 2 fold increase in 65 
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precipitation in the north limited SA growth (propagation) by ~30%, a value near the 66 

lower bounds of analytical models.  However, if the assumption of uniform precipitation 67 

is released and we assume linearly decreasing precipitation from east to west (see Fig 1c), 68 

then analytical models permit a reduction in width as low as 30% 69 

 70 

Spatially variable precipitation and an orogen scale erosion law 71 

To incorporate for non-uniform precipitation (Fig. 1c) into the orogen scaling 72 

relationships developed in Whipple and Meade (2004), we develop a simple modification 73 

of the effective erosion law so that it is consistent with the prescribed rainfall distribution.  74 

The orogen scale erosion law used by Whipple and Meade (2004) is, 75 

 76 
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 78 

Here the drainage area, A, is a proxy for discharge, Q. under the assumption of a spatially 79 

uniform precipitation distribution.  In general, for spatially variable precipitation, the 80 

flux, as a function of distance away from the drainage divide, can be written as, 81 

 82 
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 84 

where, P(x) is the precipitation distribution and A(x) is the power-law scaling for drainage 85 

area as a function of downstream distance which can be written in terms of general 86 

Hack’s law as, 
  
A( x ) cx

h .  If the particular rainfall distribution in the Subandes can be 87 

approximated as a linear ramp that decreases away from the drainage divide (Figure 1C), 88 

  
P ( x ) a x , we can write the flux as, 89 
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 92 

where P
0
 is a reference precipitation rate.  Note that for this particular precipitation 93 

distribution the accumulated channel flux is proportional to the product of the drainage 94 

area multiplied by the along channel distance from the drainage divide.  Thus, for the 95 

case of a linear downstream increase in precipitation the flux is proportional to x h 1 , 96 

rather than x
h
 for the linear precipitation case.  The Whipple and Meade (2004) scaling 97 

relationships can be adapted to this particular rainfall distribution using an effective Hack 98 
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exponent,   h h 1  (e.g., equation (3)), to represent the increased downstream flux due to 99 

this particular precipitation distribution (Figure B1). 100 

The Hack exponent contributes to the predicted orogen scaling relationships 101 

derived by Whipple and Meade (2004).  In particular the width of an actively deforming 102 

orogen is controlled by overall mass balance and is a function of the mean slope of the 103 

orogenic wedge, , the rate at which material is accreted into the wedge, F
A

, and the 104 

effective erosivity of the climate, K , 105 

 106 
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 108 

So for fixed influx and sediment recycling rates if erosivity and slope were to change, the 109 

ratio of the widths of two orogens would be, 110 

 111 
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 113 

Using the values from Whipple and Meade (2004) h 1 .67 2 .00 , m 0 .30 1 .00 , 114 

m 0 .30 1 .00 , n 0 .67 2 .00 , q 0 .11 0 .20  yields, 115 

 116 
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 118 

For the case of a linear precipitation ramp the width scaling can be calculated by 119 

replacing the geometric Hack exponent with an effective Hack exponent h h 1 .  This 120 

gives the following width ratio scaling, 121 

 122 
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 124 

The predictions for both precipitation distributions are shown in Figure B2 under the 125 

assumption of identical accretionary influx F
A1

F
A2

.  The region of models that can be 126 

explained by the Whipple and Meade theory is shifted up and to the left providing a 127 

better fit to the observations presented in the text. 128 
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The data presented here have been interpreted in the context of steady-state 129 

orogenic wedge models (e.g., Whipple and Meade, 2004).  While this is a simple end 130 

member scenario, the on-going growth of the sub-Andes may be better described by a 131 

model, which incorporates transient behavior.  For the climatic conditions associated with 132 

Taiwan Whipple and Meade (2006) estimated approach to steady-state topography 133 

between 3-4 Myr.  However they noted that systems with less erodible rocks and less 134 

rainfall (lower K) can have characteristic response times of tens of millions of years.  135 

Thus, although it is predicted that orogenic wedges grown and shrink in response to 136 

erosional efficiency (climate and rock properties) (Whipple and Meade, 2006), the 137 

magnitude of the change in orogen width would vary depending on whether an orogen is 138 

growing in response to different climate conditions or whether a steady-state orogen is 139 

responding to different climate forcings. 140 

 141 
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Figure B1.  Precipitation and flux distributions as a function of normalized distance away 161 

from the drainage divide located at x 0 .  The total amount of precipitation is the same 162 

in both cases.  However the downstream flux increases faster when the precipitation 163 

gradient increases in the same direction as does the along stream accumulated drainage 164 

area. 165 

 166 
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 168 
 169 

 170 

171 
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Figure B2.  Uniform and linear precipitation width ratios.   The shaded areas show the 172 

width ratios predicted by the uniform precipitation model and the linear precipitation 173 

model presented here.  Note that for the linear ramp case W
2
/ W

1
 exceeds 0.6 consistent 174 

with the observations presented in the text. 175 
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