1	Title:	Contraction-driven shear failure in compacting uncemented sediments
2	Author	Hosung Shin, J. Carlos. Santamarina and Joseph A. Cartwright
3		
4		
5	<u>Additic</u>	onal information on Numerical and experimental procedures
6		
7		
8	Finite	Element Model Study (Figure 1). The numerical finite element simulation employed a
9	friction	al constitutive model to capture the behavior of uncemented particulate sediments:
10	•	Drucker-Prager model with non-associated flow rule (Desai and Siriwardane, 1984).
11	•	Mesh: 100x100 plane strain 8-node elements.
12	•	Boundaries: constant vertical stress on upper and lower boundaries, no friction against any
13		boundary, zero lateral strain condition.
14	•	Parameters $\sigma_z/E=10^{-3}$, Poisson's ratio v=0.3, friction angle $\phi=30^{\circ}$.
15		
16		
17	Experimental Study (Figure 2).	
18	•	$\underline{\text{Mixture:}}$ insoluble grains (round glass beads, mean grain size 0.7 mm) and soluble salt
19		grains (NaCl, mean grain size 0.3 mm)
20	•	<u>Cell</u> : The saturated mixture was placed inside a calibrated zero lateral strain oedometer cell
21		instrumented with strain gauges to measure the horizontal stress (Cell diameter: 66 mm.
22		Specimen height: ~40 mm. Wall designed for a radial strain $< 0.005\%$, according to
23		observations in Okochi and Tatsuoka, 1984. Instrumentation: 2 strain gages are bonded at
24		the mid-height of the cell and 2 dummy gages are included for temperature compensation.
25		The evolution of vertical strain monitored using an LVDT).
26	•	Procedure: Homogeneously mixed in NaCl brine. The granular mixture was allowed to
27		reach chemo-mechanical equilibrium under an applied nominal load (constant vertical
28		effective stress: $\sigma_z\!\!=\!\!40$ kPa). Then, the fluid concentration was gradually decreased during
29		advective flow to cause the controlled dissolution of the salt grains and minimal thermal
30		changes.
31	•	Scope: A total of 20 tests were conducted with near-identical boundary conditions but for
32		varying mass fractions of salt m_{salt} (5% to 20%).
33		

- 34 Discrete Element Model Study (Figure 3). Arrangement of discrete particles satisfying Newtonian
 35 equations (Cundall and Strack 1979). Results shown in Figure 3:
- Software: PFC-2D
- Arrangement: 2D packing of 9999 disks
- Grain Properties: particle diameter ≈ 1/100 of the domain height, coefficient of variation in
 particle diameter =0.25. interparticle friction =0.5, hindered particle rotation, vertical
 stress/particle stiffness: 10⁻³.
- Boundaries: constant vertical load imposed, zero lateral strain boundaries, particle-to-wall
 friction=0.5.
- Simulation: the diameter of 20% of the particles -randomly selected- is gradually reduced
 while keeping boundary conditions constant
- Procedure Time: The time step in the numerical simulation is selected to allow for numerical stability. Dissolvable particles are gradually reduced in size in 50,000 equal steps; at each dissolution step, the vertical plate displacement is servo-controlled to maintain constant vertical stress and force equilibrium. Deformation and k-data in Figure 3 are shown bellow versus time normalized by the time for complete particle dissolution t_{100%}.

50

51

52 Finite Element Model Study (Figure 4).

- Drucker-Prager frictional model with non-associated flow rule (Desai and Siriwardane,
 1984).
- Mesh: 140x70 plane strain 8-node elements.
- Boundaries: constant vertical stress on upper and lower boundaries, no friction against any
 boundary, zero lateral strain condition.
- Parameters: $\sigma_z/E=10^{-3}$, $\varepsilon_v E/\sigma_z=1.15$, Poisson's ratio v=0.3

- Facilitate Nucleation: Correlated random field for volume contraction (coefficient of variation 20%; correlation length=20% of the model height, as in Kim and Santamarina, 2008; methodology for correlated random field generation in El-Kadi and Williams, 2000)
- 62 Figure 4A: perfectly plastic medium $\varphi_{residual} = \varphi_{peak}$.
- Figure 4B: post-peak strength softening medium φ_{peak}=30°, φ_{residual}=10°, softening modulus
 h/E=-0.05
- 65

66 Additional References Cited

- 67 Cundall, P.A., and Strack, O.D.L., 1979, A discrete numerical model for granular
 68 assemblies: Geotechnique, v. 29, p. 47-65.
- Desai, C.S., and Siriwardane, H.J., 1984, Constitutive laws for engineering materials with emphasis
 on geologic materials Englewood Cliffs, N.J., Prentice-Hall, 468 p.
- El-Kadi, A.I., and Williams, S.A., 2000, Generating two-dimensional fields of autocorrelated,
 normally distributed parameters by the matrix decomposition technique: Ground Water, v.
 38, p. 530-532.
- 74 Kim, H.K., and Santamarina, J.C., 2008, Spatial Variability and Strength: Geotechnique, in print.
- Okochi, Y., and Tatsuoka, F., 1984, Some factors affecting K₀ values of sand measured in triaxial
 cell: Soils and Foundations, v. 24, p. 52-68.