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DATA REPOSITORY ITEM 

 

I.  Analytical Methods  

Magmatic anhydrites have been analyzed in thin sections and amphibole and 

pyroxene grain mounts in epoxy plugs, polished in absence of water with diamond paste. 

Chemical composition of magmatic amphibole and anhydrite were determined using 

Cameca SX100 electron microprobe at Oregon State University, using 30 nA current, 15 

kV accelerating potential, and a beam size of 1 to 5 mm.  

Laser-ablation ICP-MS analysis of anhydrite were performed in the W.M. Keck 

Collaboratory for Plasma Mass Spectrometry at Oregon State University using a VG 

ExCell quadrupole ICP-MS and NewWave DUV 193 nm ArF Excimer laser system, with 

He used as the sweep gas. General analyses conditions were similar to those in Kent et al. 

(2004) and analyses used laser spot sizes between 50-80 µm in diameter and pulse rates 

of ~5 hz. 43Ca was used as the internal standard isotope and analyses were quantified with 

reference to analysis of NIST 612 and 610 standard glasses under similar ablation 

conditions. Measurement of standard glasses suggest an accuracy better than 10% for 

these measurements. Phosphorous and silica have been monitored to trace apatite, host 

mineral or melt presence within the ablated volume, and where necessary the contribution 

from these phases was subtracted from the measured composition. 
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II.  Summary of Analytical Data on Anhydrite 

 

 
 

Additional rare earth element data are plotted in Figure 3B, normalized to primitive 

mantle values of Sun and McDonough (1989). 

 

 

III. Samples and Preparation 

 Anhydrite-bearing samples were prepared in two manners.  Most amphibole, 

pyroxene, and anhydrite crystals were mounted in epoxy plugs and polished with 

diamond grit in a water-free environment with alcohol as lubricant to prevent dissolution 

of water-soluble anhydrite.  The Julcani samples contained phenocrystic anhydrite and 

were provided by Don Noble as mounted in standard polished thin sections. 
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V.  Mass balance estimate for hydrothermal sulfur at Yanacocha 

 

 The geologic maps and cross-sections of Longo (2005) were used to estimate the 

volume of hydrothermally altered rocks at Yanacocha (~2.5 km3).  These volume 

estimates are approximate, and likely have errors of ±50%. An unknown, but significant 

amount of altered rock has been removed by erosion (probably <20% of the total volume 

above), so our estimates are minima.  The volume percent pyrite within these rocks is 

based on estimates of representative rock samples from these zones, which lie peripheral 

to the main ore zones.  They are also approximate, and likely have errors of ±50%.   

 The volume of strongly altered, ore bearing zones that can be estimated from the 

average ore reserve and production grades (0.5 to 1 g/tonne) and the total resource of ~50 

M ounces (~1,800 tonnes) of gold contained in ~3 G tonnes oxide ores with abundant 

alunite and pyrite. In addition, ~1 G tonnes of sulfide-bearing Cu-Au are present beneath 

the Au-bearing oxide ores (L. Teal, personal commun., 2006).  Our estimates are minima, 

because the main orebodies around the main Yanacocha pit have been eroded and 

glaciated, and the upper sulfur-rich part of the hydrothermal system is missing.  The 

presence of abundant pyrophyllite (>250°C stability) in the ores suggests that boiling 

solutions were at >10 bar hydrostatic pressure, i.e. at >100 m depth. 

Table DR2:  Mass Balance Estimate for Yanacocha Hydrothermal Sulfur 
 
Hydrothermal 
Zone 

Mass  Sulfide Sulfide S Sulfate Sulfate S Sulfur 

conservative 
& minimum 
estimate 

    G 
tonnes 

Minerals wt.% wt.% Mineral   wt.% wt.% 
   M 
tonnes 

Au ore bodies 3   Py, Cv, En 
(oxidized) 

5 2.67 alunite 5 0.77 103 

Peripheral 
propylitic & 
intermediate 
argillic 
alteration 

6 Py 2 1.07 tr 0 0 64 

Deep Cu-Au 
sulfide ores 

1 Py, Cv, En 2 1.07 alunite 0.5 0.27 13 

       sum 181 
abbreviations:  Py = pyrite;  Cv = covellite;  En = enargite 
 

DR2008181


