1	Supplementary Information
2	A modern iron isotope perspective on the redox evolution of
3	ancient oceans
4	Silke Severmann, Timothy W. Lyons, Ariel Anbar, James McManus & Gwyneth Gordon
5 6	Materials and methods
7	1) Sample descriptions
8	The samples used in this study were collected during the 1988 R/V Knorr Black
9	Sea cruise. The exact locations, sedimentology and geochemistry are described in detail
10	elsewhere (Lyons, 1991; Lyons and Berner, 1992; Lyons et al., 1993; Anderson et al.,
11	1994; Canfield et al., 1996; Lyons, 1997; Hurtgen et al., 1999). Cores from the central
12	euxinic basin (stations 9 and 14, >2000 m) consist entirely of microlaminated, coccolith-
13	rich Unit 1 mud [using the nomenclature of Ross et al. (1970)]. Organic carbon and
14	calcium carbonate concentrations in these euxinic sediment average 5.3 ± 1.0 and
15	52.5±11.3 (±1s) wt.%, respectively. Pyrites in this unit are present dominantly as fine-
16	grained framboidal aggregates, which is indicates that they formed syngenetically in the
17	water column (Wilkin and Arthur, 2001).
18	Stations 3, 4, 16, and 17 were on the shallow oxic shelf, where sediments are
19	characterized by high degrees of bioturbation. Below the surface interval, organic carbon
20	and calcium carbonate concentrations at the four shallow stations collectively average
21	1.3±0.4 and 20.1±5.3 wt.%, respectively. The shallower Black Sea sediments contain an
22	increasing proportion of fine-grained euhedral pyrite, which is more typical of diagenetic
23	pyrite formation within the sediments (Wilkin and Arthur, 2001). Sedimentation rates for
24	Unit 1 sediments have been estimated as roughly 15 to 20 cm/kyr (Calvert and Karlin,
25	1991; Crusius and Anderson, 1992; Arthur et al., 1994; Jones and Gagnon, 1994). Rates
26	at stations 3, 16 and 17 range between 60 and 90 cm/kyr (Anderson et al., 1994; data are
27	unavailable for Station 4).
•	

29 2) Sample preparation and analysis

30 For analysis of total iron isotope compositions, ~0.1g of dried sediment was fully 31 dissolved using a mixture of HNO₃, HClO₃ and HF. For determination of pyrite isotope 32 composition we used a chemical leaching procedure modified after Huerta-Diaz and 33 Morse (1992). Briefly, ~0.5 g of dry sediment was extracted in concentrated boiling HCl 34 for 1 min. The residue was treated with two sequential HF extractions (30 ml 10M HF for 35 1 hr, then 30 ml 10M HF for 16 hrs) to dissolve any remaining silicate phases. The only 36 significant iron phase remaining after this treatment is pyrite, which was extracted in 10 37 ml of concentrated HNO₃ for 2 hrs. All extractions were performed at room temperature 38 under constant shaking. Chemically extracted pyrite-Fe was dried down repeatedly in 39 concentrated HNO₃ and H₂O₂ to break down any residual organic carbon. Dry residue 40 was dissolved in 7M HCl, and ~100 µg of iron was purified on Bio-Rad AG1X8 anion 41 resin (~250µl volume) following the procedure of Beard et al. (2003). Column yields 42 were carefully monitored by *Ferrozine* analysis of each sample before and after chemical 43 processing, and only samples that had $\geq 95\%$ recovery were used for iron isotope analysis.

44 Iron isotope analysis was performed on a ThermoFinnigan Neptune multi-45 collector inductively coupled plasma mass-spectrometer (MC-ICP-MS) at Arizona State 46 University, following the method of Arnold et al. (2004). Samples were introduced as 2 47 ppm or 3 ppm solutions through a desolvating nebulizer. The analysis was performed in 48 medium mass resolution mode (mass resolving power of 8000-9000). Mass bias during 49 the analysis was corrected by using a Cu elemental spike, which was added to the 50 purified samples to a concentration matching that of the Fe concentration. In addition, 51 sample isotope ratios were normalized to the average of two bracketing standards as an additional correction for instrumental mass discrimination. ⁵³Cr, ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe, ⁵⁸Fe, 52 ⁶⁰Ni, ⁶³Cu and ⁶⁵Cu were measured in dynamic mode, where masses 53 to 60 were 53 54 measured during the first integration and the two Cu isotopes were measured during the 55 second integration.

Several standard reference materials of known isotope composition, including
 IRMM-014, were measured routinely for each sample batch. In addition, we measured
 gravimetric standards, which were prepared by adding a known amount of enriched ⁵⁴Fe
 tracer (97.7% purity, Oak Ridge National Lab) to IRMM-014 standard. Of the 64 samples

60	analyzed in this study, 15 were processed through duplicate chemical treatment, including					
61	sample dissolution or pyrite-Fe extraction and chromatographic extraction. Data are					
62	reported in per mil (‰) δ notation using the ⁵⁶ Fe/ ⁵⁴ Fe sample ratio relative to the average					
63	of igneous rocks (δ^{56} Fe), which have a δ^{56} Fe of 0.00 ±0.05 ‰ (Beard et al., 2003). On					
64	this scale, the IRMM-014 standard has δ^{56} Fe = -0.09 ‰. Replicate analyses were made					
65	on different days, and errors for samples with ≥ 2 repeat analyses are reported as two					
66	standard deviations (2-SD). The average external 2-SD reproducibility, as determined by					
67	duplicate analysis via re-processing of several powdered samples through chemistry, is					
68	± 0.06 ‰ for δ^{56} Fe and ± 0.07 ‰ for δ^{57} Fe.					
69	The iron isotope fractionation between coexisting phases A and B is described by					
70	$\Delta^{56} Fe_{A-B} = \delta^{56} Fe_A - \delta^{56} Fe_B \approx 10^3 \ln \alpha_{A-B}, \tag{E1}$					
71	where α_{A-B} is the isotope fractionation factor in terms of 56 Fe/ 54 Fe ratios.					
72	The isotope composition of the benthic export flux δ^{56} Fe _{Ex} may be calculated					
73	using the iron isotope composition of either Fe _T or Fe _{Py} :					
74	$\delta^{56} Fe_{Ex} = (\delta^{56} Fe_T * [Fe_T]) / [Fe_{Ex}] $ (E2)					
75	or					
76	$\delta^{56} F e_{Ex} = (\delta^{56} F e_{Py} * [F e_{Py}]) / [F e_{Ex}], $ (E3)					
77	where $[Fe_{Ex}]$ denote concentrations of the individual iron pools. Benthic export iron flux					
78	is assumed to be quantitatively converted to pyrite, and concentrations of the exported					
79	iron component in the sediments are calculated as					
80	$[Fe_{Ex}] = [Fe_{T}]-[A1]*0.6,$ (E4)					
81	where 0.6 is the Fe_T/Al ratio for the lithogenic baseline. This ratio represents the highest					
82	ratio measured for sediments from the oxic shelf (Station 17, mean $Fe_T/Al=0.60$, see					
83	Table S1) and is higher than the commonly used Fe_T/Al ratio for average shale of 0.5					
84	(Taylor and McLennan, 1985). Shuttling of reactive Fe from the shelf sediments to the					
85	deep basin causes a decrease of the Fe_T/Al ratio, suggesting that our elevated ratios are					
86	not due to post-depositional modification of the detrital material, but rather that they					

87	reflect a local lithogenic Fe_T/Al baseline for the Black Sea that deviates from the
88	generally accepted global average (Lyons and Severmann, 2006). Probably the best
89	approach to derive an estimate of the Fe_T/Al baseline would be to measure the
90	composition of particles from the zone of estuarine mixing, since riverine particles
91	undergo some modification during passage through the estuary (Poulton and Raiswell,
92	2005). In the absence of a direct measure of the Fe_T /Al ratio for the local terrestrial
93	particulate input, we assume that our highest measured sediment Fe_T/Al ratios best
94	represent a lithogenic baseline value for the Black Sea, although we recognize that this is
95	not ideal. We note, however, that the choice of the Fe_T/Al baseline as well as its isotope
96	composition does not affect our principal observation, which is the systematic decrease in
97	iron isotope compositions from the shelf sediments to the deep basin sediments and their
98	inverse relationship with Fe_T/Al ratios (Fig. 3).

Depth	Depositional setting	Feτ	AI	Fe/Al	Fe _{Pv}	δ⁵⁵Fe⊤		δ ⁵⁷ Fe _T			δ ⁵⁶ Fe _{Pv}		$\delta^{57}Fe_{Py}$			δ ⁵⁶ Fe _{Ex}	δ ⁵⁶ Fe _{Ex}
(cm)	3	(wt. %)	(wt. %)		(wt. %)	(ä)	2-SD	(ä)	2-SD	n ¹	(ä)	2-SD	(ä)	2-SD	n ¹	(from Fe _{Py})	
station 16 (129	9m)	())	(((1)		(1)			(1)		(1)			('''''	,
0-2	oxic	2.76	5.07	0.54	0.01	0.08	±0.12	0 1 1	±0.14	2	-0.54	±0.04	-0 71	±0.28	2+2		
4-6	oxic	2.61	5.07	0.51	0.03	0.00		0.20	±0.02	2	-1.07	±0.04			3		
6-8	oxic	3.15	5.79	0.54	0.08	0.08		0.20	±0.02	3+2	-1.17	10.02	-1.76	10.10	1		
8-10	oxic	2.90	5.62	0.52	0.10		±0.07		±0.02	2	-1.13	±0.09		±0.01	3		
10-12	oxic	3.12	5.80	0.54	0.08	0.03				2+2	-1.00	10.00	-1.51	10.01	1		
12-14	oxic	2.89	5.68	0.51	0.10		±0.10	0.20		3	-0.99	±0.08		±0.07	2		
14-16	oxic	3.11	5.79	0.54	0.09	0.06		0.08	±0.08	2+2	-0.93	10.00	-1.40	10.01	1		
16-18	oxic	3.20	5.78	0.55	0.11	0.09			±0.00	2+2	-1.02		-1.56		1		
Station 17 (97)		0.20	0.1.0	0.00	0	0.00	_0.01	0.10	20101								
0-2	oxic	3.77	6.13	0.62	0.01	0.04	±0.05	0.00	±0.08	2	-0.41	±0.06	0.52	±0.06	2		
2-4	oxic	4.00	6.30	0.62	0.01	0.04	±0.05 ±0.09		±0.08 ±0.11		-0.41	±0.00	-0.52	±0.00	2		
2-4 4-6	oxic	3.79	6.37	0.63	0.01	0.01			±0.11 ±0.01	2+2	-0.54		-0.71		1		
6-8	oxic	3.68	6.16	0.55	0.02	0.05		0.05	±0.01 ±0.13	2	-0.87		-1.26		1		
8-10	oxic	3.49	6.03	0.58	0.02	0.03		0.00	±0.13 ±0.03	2	-0.94		-1.37		1		
10-12	oxic	3.49	5.98	0.58	0.03	0.03			±0.03 ±0.04	2	-0.94		-1.87		1		
12-14	oxic	3.80	6.31	0.60	0.00	0.03	±0.02 ±0.00		±0.04 ±0.02	2	-1.19	±0.14		±0.60	1		
14-16	oxic	3.56	5.73	0.62	0.21	0.01			±0.02 ±0.04	2+1	-1.16			±0.00 ±0.05	2		
		0.00	5.75	0.02	0.21	0.10	10.15	0.12	10.04	211	1.10	10.10	1.71	10.00	2		
Station 3 (85m	,	0.00	0.00	0.54	0.00	0.04	0.04	0.05	0.00	•							
0-2	oxic	3.08	6.08	0.51	0.06	0.04			±0.02	2							
2-4	oxic	3.27	6.64	0.49	0.13	0.08			±0.03	2							
6-8	paleo-chemocline	4.75	5.95	0.80	2.79	-0.37											-1.3
8-10	paleo-chemocline	5.08	6.52	0.78	2.83	-0.21	±0.03	-0.31	±0.01	2							-0.8
Station 4 (115)																	
0-2	oxic	3.04	6.49	0.47	0.08		±0.01		±0.08	2							
2-4	oxic	2.93	6.33	0.46	0.08	0.08	±0.01		±0.02	2							
8-10	paleo-chemocline	4.15	5.65	0.73	2.00		±0.01		±0.03	2							-1.1
10-12	paleo-chemocline	4.12	5.49	0.75	2.10	-0.13	±0.01	-0.23	±0.03	2							-0.5
Station 9 (2094	4m)																
4-6	euxinic	2.19	2.64	0.83	1.24	-0.34	±0.13	-0.44	±0.12	2	-0.74	±0.16	-1.10	±0.11	5	-1.48	-1.1
8-10	euxinic	2.41	2.66	0.91	1.43	-0.06	±0.08	-0.06	±0.15	3	-0.76	±0.01	-1.14	±0.02	2	-1.31	-0.1
14-16	euxinic	0.95	0.94	1.01	0.61	-0.34	±0.09	-0.45	±0.14	4	-0.80	±0.11	-1.23	±0.07	3+2	-1.25	-0.8
16-18	euxinic	2.01	1.96	1.02	1.31	-0.34	±0.07	-0.49	±0.05	3	-0.82	±0.04	-1.22	±0.05	2+1	-1.28	-0.8
24-26	euxinic	1.45	1.39	1.04	0.99	-0.24	±0.05	-0.37	±0.08	2+2	-0.64	±0.12	-0.97	±0.19	2+2	-1.01	-0.5
Station 14 (221	18m)																
0-2	euxinic	2.64	4.43	0.60	1.06	-0.13	±0.15	-0.15	±0.22	2	-0.72	±0.13	-1.03	+0.09	4	(42.11)	(20.89
4-6	euxinic	2.69	3.86	0.70	1.26	-0.15		-0.20		1		±0.06		±0.01	2	-2.19	-1.0
8-10	euxinic	1.64	2.12	0.77	0.87	-0.21		-0.27		1		±0.07		±0.11	3	-1.64	-0.9
10-12	euxinic	1.27	1.59	0.80	0.68	-0.24	±0.02		±0.00	2	••••				-		-0.9
12-14	euxinic	2.51	3.34	0.75	1.17	-0.34		-0.57	±0.06	2	-0.72	±0.12	-1.12	±0.14	2+2	-1.63	-1.6
14-16	euxinic	2.19	2.76	0.79	1.10	-0.22	±0.02	-0.33		2							-0.8
16-18	euxinic	2.47	3.36	0.73	1.25	-0.13		-0.15		1	-0.78	±0.09	-1.18	±0.16	1+1	-2.12	-0.6
18-20	euxinic	1.81	2.39	0.76	0.85		±0.00	-0.28	±0.01	2							-0.8
20-22	euxinic	1.84	2.34	0.79	0.67	-0.22		-0.36	±0.03	2							-0.8
22-24	euxinic	2.28	3.40	0.67	0.85		±0.04		±0.06	2+2							-1.5
	ence materials																
RMM-014						-0.09	±0.03	-0.36	±0.26	18							
BIR-2						-0.03			±0.20 ±0.27	18							
Grav IRMM-014	4 -1ä ²						±0.03 ±0.02	-0.20	±0.27	17							
BHVO-1	ти					-1.13		-0.15	±0.05	2							
Sco-1						-0.03	±0.04 ±0.01	-0.15		2							
SDO-1						-0.01			±0.06 ±0.10	∠ 3+2							
SDO-1 SGR-1						-0.05			±0.10 ±0.01	3+2 2							
						-0.04	±0.02	-0.24	±0.01	~							

¹ Number of repeat isotope analysis, where multiple entries (e.g. 2+2) indicates that powdered samples were re-processed through entire chemical procedure.
 ² Gravimetric standard was made from IRMM-014 and enriched ⁵⁴Fe enriched tracer. The true to ⁵⁶Fe of the gravimetric standard is -1ä relative to IRMM-014.
 ³ In-house standard made from mixed metaliferous hydrothermal sulfide sediments.

 \boldsymbol{v}

100	References
101	
102 103	Anderson R. F., Lyons T. W., and Cowie G. L. (1994) Sedimentary record of a shoaling of the oxic/anoxic interface in the Black Sea. <i>Mar. Geol.</i> 116 , 373-384.
104	Arnold G. L., Weyer S., and Anbar A. D. (2004) Fe isotope variations in natural materials
105	using high mass resolution multiple collector ICPMS. Anal. Chem. 76 , 322-327.
106	Arthur M. A., Dean W. E., Neff E. D., Hay B. J., King G. M., and Jones A. D. (1994)
107	Varve calibrated records of carbonate and organic carbon accumulation over the
108	last 2000 years in the Black Sea. Global Biogeochem. Cycles 8, 195-217.
109	Beard B. L., Johnson C. M., Skulan J. L., Nealson K. H., Sun H., and Cox L. (2003)
110	Application of Fe isotopes to tracing the geochemical and biochemical cycling of
111	Fe. Chem. Geol. 195 , 87-117.
112	Calvert S. E. and Karlin R. E. (1991) Relationships between sulphur, organic carbon, and
113	iron in the modern sediments of the Black Sea. Geochim. Cosmochim. Acta 55,
114	2483-2490.
115	Canfield D. E., Lyons T. W., and Raiswell R. (1996) A model for iron deposition to
116	euxinic Black Sea sediments. Am. J. Sci. 296, 818-834.
117	Crusius J. and Anderson R. F. (1992) Inconsistencies in accumulation rates of Black Sea
118	sediments inferred from records of laminae and ²¹⁰ Pb. Paleoceanography 7, 215-
119	227.
120	Huerta-Diaz M. A. and Morse J. W. (1992) Pyritization of trace metals in anoxic marine
121	sediments. Geochim. Cosmochim. Acta 56, 2681-2702.
122	Hurtgen M. T., Lyons T. W., Ingall E. D., and Cruse A. M. (1999) Anomalous
123	enrichments of iron monosulfide in euxinic marine sediments and the role of H_2S
124	in iron sulfide transformations; examples from Effingham Inlet, Orca Basin, and
125	the Black Sea. Am. J. Sci. 299, 556-588.
126	Jones G. A. and Gagnon A. R. (1994) Radiocarbon chronology of Black Sea sediments.
127	Deep-Sea Res. 41, 531-557.
128 129	Lyons T. W. (1991) Upper Holocene sediments of the Black Sea: Summary of Leg 4 box- cores (1988 Black Sea Oceanographic expedition). In <i>Black Sea Oceanography</i>
129	(ed. E. Izdar and J. W. Murray), pp. 401-441. Kluwer.
130	Lyons T. W. (1997) Sulfur isotope trends and pathways of iron sulfide formation in the
131	upper Holocene sediments of the anoxic Black Sea. <i>Geochim. Cosmochim. Acta</i>
132	61 , 3367-3382.
133	Lyons T. W. and Berner R. A. (1992) Carbon-sulfur-iron systematics of the uppermost
135	deep-water sediments of the Black Sea. <i>Chem. Geol.</i> 99 , 1-27.
136	Lyons T. W. and Severmann S. (2006) A critical look at iron paleoredox proxies based on
137	new insights from modern euxinic marine basins. <i>Geochim. Cosmochim. Acta</i> 70 ,
138	5698-5722.
139	Lyons T. W., Berner R. A., and Anderson R. F. (1993) Evidence for large pre-industrial
140	permutations of Black Sea chemocline. <i>Nature</i> 365 , 538-540.
141	Poulton S. W. and Raiswell R. (2005) Chemical and physical characteristics of iron
142	oxides in riverine and glacial meltwater sediments. Chem. Geol. 218, 203-221.
143	Ross D. A., Degens E. T., and MacIlvaine J. (1970) Black Sea: recent sedimentary
144	history. Science 170, 163-165.

145	Taylor S. R. and McLennan S. M. (1985) The Continental Crust: Its Composition and
146	Evolution. Blackwell.
147	Wilkin R. T. and Arthur M. A. (2001) Variations in pyrite texture, sulfur isotope
148	compositions, and iron systematics in the Black Sea: Evidence for the late
149	Pleistocene to Holocene excursions of the O ₂ -H ₂ S redox transitions. <i>Geochim</i> .
150	<i>Cosmochim. Acta</i> 65 , 1399-1416.
151	