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Samples and Methods 

 

Samples were collected from the Whitby Mudstone Formation (Toarcian), now exposed 

along the Yorkshire coast, UK, and were obtained from three localities (Table DR1); 

Saltwick Bay (NZ 916111), Port Mulgrave (NZ 798176) and Hawsker Bottoms (NZ 

944082). For detailed locality maps and site descriptions see Howarth (1962, 1973 & 

1992) and Rawson and Wright (1995). Samples are predominantly organic-rich mudrocks 

that are stratigraphically equivalent to similar organic-rich deposits throughout Central 

and Western Europe (e.g. the ‘Schistes Carton’ from the Paris Basin, France, and the 

‘Posidonia Shale’ from the Posidonienschiefer Basin, Germany) (Jenkyns, 1988; Röhl et 

al., 2001). The samples that we have analysed constitute part of a high resolution sample 

set through the succession and are accurately correlated with samples used in a recent 

high resolution δ13Corg study (Kemp et al., 2005; Kemp, 2006). Fourier transform analysis 

of these high resolution δ13Corg, CaCO3, S and TOC data (Kemp et al., 2005; Kemp, 

2006) has shown that sedimentation rates in the Cleveland Basin remained approximately 

constant throughout Intervals 1 and 2 (Figs. 1 and 2). 

 

All samples were prepared and analysed at The Open University.  Rock samples were 

crushed in an agate TEMA or in a ceramic mortar before digestion in sealed PFA vials 

using a 3:1 mixture of c. HNO3 and c. HCl. Samples were digested for 5–7 days at ~130 

oC, which ensured the complete oxidation of the organic matter, and the oxidation and 

dissolution of the authigenic redox-sensitive metals. Prior to dissolution, an isotopic 

double spike of 100Mo and 97Mo, and a 185Re single spike, were added to accurately 
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weighed sample aliquots. Both Mo and Re were purified using a new, highly efficient 

single pass anion exchange procedure that gave ~100 % recovery of Mo and Re (Pearce 

and Cohen, In Prep.). Isotopic analyses were performed using a Nu Instruments MC-ICP-

MS connected to a DSN-100 desolvation nebuliser. Mo-isotope compositions were 

resolved offline using the Newton-Raphson deconvolution procedure (Albarède and 

Beard, 2004), with data normalised to an in-house Mo standard (Fisher Chemicals Batch 

No. 9920914-150). The long-term reproducibility of this standard is 0.12 ‰ (2σ). Repeat 

analyses of IAPSO seawater salinity standard yielded a mean δ98/95Mo composition of 

2.55 ± 0.05 ‰ (2 sd, n=6); analyses of basalt standard BHVO-2 gave a mean δ98/95Mo 

composition of 0.19 + 0.1 ‰ (2 sd, n=6); and repeat measurements of an in-house 

organic-rich mudrock yielded a mean δ98/95Mo value of 0.88 + 0.1 ‰ (2 sd, n=16). Mo 

and Re concentrations were calculated by isotope dilution. Total organic carbon (TOC) 

was determined using a LECO Instruments CNS-2000 elemental analyser. 
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Data Repository Figures  Figure DR1 
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Figure DR1.  

Variations in geochemical parameters against stratigraphical height for samples from the 

Early Toarcian, Yorkshire. The first 4 parameters (TOC, δ13Corg, δ98/95Mo and Re/Mo 

ratio) and references are presented in Fig. 1 of the main paper. Additional parameters 

include the degree of pyritisation (DOP) (Raiswell et al., 1993), which is a proxy for 

anoxia/euxinia; a proxy indicating seawater temperature (δ18O) (McArthur et al., 2000; 

Bailey et al., 2003); and two proxies reflecting continental weathering flux, 87Sr/86Sr 

(McArthur et al., 2000) and 187Os/188Os (Cohen et al., 1999, 2004). The progressive 

change from oxic to euxinic conditions in the upper part of Interval 1 in the Cleveland 

Basin in Yorkshire is defined by the changing δ98/95Mo values and Re/Mo ratios, which 

increased and decreased, respectively. Low Re/Mo ratios and high DOP values indicate 

that conditions were persistently euxinic throughout Interval 2.  The δ18O data suggest 

that there was a gradual increase in temperature in the upper part of Interval 1, followed 

by a very sudden increase in temperature at exactly the same time as the first abrupt 

decrease in δ13Corg at the boundary between Intervals 1 and 2. The proxies for continental 

weathering flux (the seawater 87Sr/86Sr and 187Os/188Os ratios) indicate that weathering 

rates accelerated greatly during the main part of the carbon isotope excursion. 
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Figure DR2.  

 

 

 

 
 

 
Figure DR2.   

Fluctuations in the areal extent of marine euxinia in the Early Toarcian expressed as a 

percentage of total seafloor area, calculated using the steady-state model of Ling et al., 

(2005). Because no data are available on the extent of sites of suboxic and anoxic 

sediment accumulation in the Toarcian, the model assumes that the variations in δ98/85Mo 

resulted solely from the expansion and contraction of sites of oxic and euxinic sediment 

accumulation. The overall decrease in δ98/95Mo indicates that the area of seafloor that was 



Data Repository Item DR2008057  Pearce et al.   6 

highly reducing increased periodically by at least an order of magnitude during the 

Toarcian OAE, and was likely to have encompassed much, if not all, of the continental 

shelf at that time. Strongly reducing conditions may also have extended into the deep 

ocean basins, as suggested by the presence of a discrete organic-rich horizon of Toarcian 

age in allocthonous cherts in Japan (Hori, 1997); at present our data cannot confirm this 

possibility. 
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Table DR1 
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Sample Exposure Ammonite 
Subzone 

Height 
(m) 

TOC 
(wt %) 

δ98/95Mo 
(‰) 

[Mo] 
(ppm) 

[Re] 
(ppb) 

Re/Mo 
(ppb/ppm)

Tco 01-62∗ S.B. commune 34.67 2.55 1.68 ± 0.03 7.47 45.97 6.16 
Tco 01-50∗ S.B. commune 29.79 3.41 1.28 ± 0.04 15.86 99.74 6.29 
Tfa 01-44 S.B. falciferum 26.89 2.08 1.74 ± 0.03 3.34 17.55 5.26 

4 

Tfa 01-34 S.B. falciferum 21.87 2.03 1.65 ± 0.03 3.92 19.00 4.85 
Tfa 01-30∗ S.B. falciferum 19.87 3.53 2.12 ± 0.02 15.83 58.54 3.70 
Tfa 01-29 S.B. falciferum 19.37 3.12 2.14 ± 0.03 42.97 111.32 2.59 
Tfa 01-27 S.B. falciferum 18.37 3.34 1.84 ± 0.04 33.55 86.04 2.56 
Tfa 01-25 S.B. falciferum 17.38 3.14 1.74 ± 0.03 23.10 90.15 3.90 
Tfa 01-21∗ S.B. falciferum 15.38 3.41 1.75 ± 0.05 30.49 63.05 2.07 
Tfa 01-18 S.B. falciferum 13.88 2.26 1.51 ± 0.03 15.84 50.28 3.17 
Tfa 01-16 S.B. falciferum 12.88 3.45 1.71 ± 0.04 22.52 48.76 2.17 
Tfa 01-15∗ S.B. falciferum 11.88 3.80 2.02 ± 0.03 39.30 83.50 2.12 
Tfa 01-04 P.M. falciferum 10.20 3.92 2.00 ± 0.04 26.09 61.63 2.36 
Tfa 00-85 H.B. falciferum 8.65 4.33 1.62 ± 0.03 34.69 97.11 2.80 
Tfa 00-32 P.M. falciferum 7.44 4.69 1.83 ± 0.03 15.90 75.89 4.77 

3 

Tex 00-81 H.B. exaratum 6.15 3.84 1.62 ± 0.08 9.50 76.21 8.02 
Tex 97-46∗ P.M. exaratum 5.42 5.63 1.07 ± 0.03 4.09 17.71 4.33 
Tex 00-22 P.M. exaratum 4.68 5.97 1.25 ± 0.03 7.58 41.91 5.53 
Tex 00-24 P.M. exaratum 4.50 6.93 0.98 ± 0.03 4.91 23.08 4.71 
Tex 00-25 P.M. exaratum 4.30 6.61 1.00 ± 0.07 6.26 19.97 3.19 
Tex 06-38 P.M. exaratum 4.01 8.90 0.88 ± 0.03 6.43 26.21 4.08 
Tex 06-28 P.M. exaratum 3.86 14.67 0.83 ± 0.04 7.53 23.75 3.15 
Tex 97-39∗ P.M. exaratum 3.53 9.40 0.81 ± 0.04 14.44 20.76 1.44 
Tex 97-27∗ P.M. exaratum 3.31 10.19 0.97 ± 0.05 15.57 20.99 1.35 
Tex 06-16 P.M. exaratum 3.08 9.91 0.81 ± 0.03 11.22 23.02 2.05 
Tex 06-08 P.M. exaratum 2.95 8.64 1.05 ± 0.03 7.57 17.50 2.31 
Tex 06-06 P.M. exaratum 2.92 12.12 0.97 ± 0.04 6.23 13.63 2.19 
Tex 06-01 P.M. exaratum 2.81 8.84 1.11 ± 0.06 7.78 16.56 2.13 
Tex 00-74 H.B. exaratum 2.68 7.84 1.35 ± 0.04 7.46 18.51 2.48 
Tex 00-73 H.B. exaratum 2.18 9.14 1.53 ± 0.04 5.50 16.82 3.06 
Tex 00-16 P.M. exaratum 2.08 9.21 1.01 ± 0.03 7.19 14.56 2.03 

2 

Tex 01-02 P.M. exaratum 1.80 9.89 1.04 ± 0.03 7.12 15.27 2.14 
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Sample Exposure Ammonite 
Subzone 

Height 
(m) 

TOC 
(wt %) 

δ98/95Mo 
(‰) 

[Mo] 
(ppm) 

[Re] 
(ppb)

Re/Mo 
(ppb/ppm)

Tex 00-72 H.B. exaratum 1.59 8.70 1.02 ± 0.05 5.96 13.77 2.31 
Tex 97-09 P.M. exaratum 1.38 9.04 0.89 ± 0.04 6.04 20.23 3.35 
Tex 97-08 P.M. exaratum 1.38 9.04 0.88 ± 0.01 5.78 28.09 4.86 
TC05-A01 P.M. exaratum 1.21 4.91 1.12 ± 0.04 6.44 26.33 4.09 
Tex 00-14 P.M. exaratum 1.16 5.08 1.04 ± 0.02 6.75 32.20 4.77 
Tex 00-71 H.B. exaratum 1.14 6.61 1.25 ± 0.04 3.83 16.80 4.39 
TC05-A02 P.M. exaratum 1.09 6.21 1.22 ± 0.04 3.64 14.06 3.87 
TC05-A03 P.M. exaratum 0.89 7.19 1.45 ± 0.03 3.73 13.88 3.72 
Tex 00-13 P.M. exaratum 0.67 6.93 1.57 ± 0.04 3.82 13.21 3.46 
Tex 97-28 P.M. exaratum 0.42 7.80 1.18 ± 0.06 6.12 22.66 3.70 
Tex 97-32 P.M. exaratum 0.15 8.80 1.00 ± 0.05 7.31 15.47 2.11 
TC05-B01 P.M. exaratum 0.06 3.47 1.23 ± 0.06 7.96 24.68 3.10 
TC05-B02 P.M. exaratum 0.04 3.63 1.14 ± 0.05 6.80 19.68 2.89 
TC05-B03 P.M. semicelatum -0.01 4.80 1.33 ± 0.04 3.99 15.91 3.99 
TC05-B04 P.M. semicelatum -0.16 5.39 1.38 ± 0.04 4.35 15.64 3.59 
Tse 97-36∗ P.M. semicelatum -0.25 6.65 1.53 ± 0.04 4.06 13.87 3.42 
TC05-C01 H.B. semicelatum -0.36 4.52 1.43 ± 0.04 4.28 25.55 5.97 
Tse 00-68 H.B. semicelatum -0.46 4.16 1.06 ± 0.03 6.70 44.59 6.66 
TC05-C02 H.B. semicelatum -0.63 4.39 1.32 ± 0.08 5.93 42.55 7.18 
Tse 00-15 P.M. semicelatum -0.65 5.70 1.42 ± 0.04 3.32 39.97 12.03 
TC05-C03 H.B. semicelatum -0.68 4.09 1.33 ± 0.04 4.87 38.88 7.98 

2 

TC05-C04 H.B. semicelatum -0.73 3.97 1.58 ± 0.04 4.03 35.79 8.89 
Tse 00-67 H.B. semicelatum -0.96 4.20 1.59 ± 0.04 4.59 35.25 7.68 
Tse 00-66 H.B. semicelatum -1.21 4.20 1.48 ± 0.05 4.89 44.95 9.20 
Tse 00-65∗ H.B. semicelatum -1.71 4.06 1.37 ± 0.05 3.03 39.54 13.05 
Tse 00-63 H.B. semicelatum -3.00 2.29 1.25 ± 0.04 1.15 9.61 8.33 
Tse 00-62 H.B. semicelatum -3.50 1.77 0.99 ± 0.02 1.10 10.78 9.76 
Tse 00-60 H.B. semicelatum -4.50 1.79 0.33 ± 0.04 0.51 5.44 10.62 
Tte 00-59 H.B. semicelatum -5.02 1.42 -0.30 ± 0.04 0.39 6.39 16.37 
Tte 00-58 H.B. tenuicostatum -5.62 1.62 -0.04 ± 0.04 0.49 6.07 12.48 
Tte 00-53 H.B. tenuicostatum -8.07 1.41 0.04 ± 0.04 0.43 4.68 10.77 

1 

Tpa 00-44 H.B. paltum -12.07 1.39 -0.46 ± 0.04 0.41 3.01 7.38 
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Table DR1.  

Sample locations and stratigraphic positions with TOC, δ98/95Mo, [Mo], [Re] and Re/Mo 

data for mudrocks from the Whitby Mudstone Formation, Yorkshire, UK.  The δ98/95Mo 

measurements are presented with respect to the in-house Mo standard and uncertainties 

are the internal 2 s.e. of the measurement.  Sample localities are Saltwick Bay (S.B.), Port 

Mulgrave (P.M.) and Hawsker Bottoms (H.B.).  Ammonite subzones are taken from 

(Howarth, 1962, 1992) and heights are given with respect to the base of the exaratum 

Subzone, defined as the base of bed 33 (Howarth, 1962, 1992).  Os-isotope analyses have 

been performed (Cohen et al., 1999, 2004) on samples marked ∗.  Intervals 1 to 4 refer to 

the divisions of the succession that have made on geochemical criteria (see main text for 

details). 
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