Appendix 1: Methods

A selection of pink detrital grains representing the size range in the sample as well as large brown grains, the largest containing colourless rounded cores, were mounted along with oxygen and U-Pb standard zircons. U-Pb geochronology and trace element analysis were performed with the SHRIMP-RG at the U.S.G.S.-Stanford Ion Probe Laboratory. Age determinations utilized a 5 nA O_2^- primary beam, producing a ~25 μ m diameter spot, and were referenced to VP-10, a 1200 Ma in-house zircon age standard from southern California. Subsequent to U-Pb dating, the mounts were re-coated with gold, and trace elements (including Ti) were measured adjacent to the U-Pb spots. Trace element measurement conditions are comparable to those for geochronology, except a smaller diameter spot (15-20 μ m) is used and the mass resolution (M/ Δ M) is increased from ~8000 to ~10500 (at 10% peak height) to eliminate isobaric interferences (e.g. 96 Zr²⁺ and 48 Ca⁺ on 48 Ti⁺) (Mazdab and Wooden, 2006). Nonetheless, both 48 Ti⁺ and ⁴⁹Ti⁺ are measured as a check. Trace element concentrations are standardized against the Sri Lankan megacryst zircon CZ3 which was calibrated against a set of synthetic trace element-doped zircons. 1σ precision of the measured Ti concentrations is less than 3%. The mount was re-imaged with SEM-CL to locate SHRIMP-RG pits and then re-polished to a depth sufficient to remove these pits (~ 2 microns). Oxygen isotope analysis was then performed with the CAMECA ims-1280 ion microprobe at the University of Wisconsin -Madison (Wisc-SIMS) and standardized to the UW KIM-5 zircon standard using measurement protocols described in Kita et al. (2007) and Page et al. (2007). Full data for samples are reported in Supplemental Table 1. Wisc-SIMS spots were placed in the same location as the pre-existing U-Pb spots using both 15 micron and 7 micron spot

DR2008059

diameters. U-Pb pits were ground away and repolished before oxygen isotope analysis. Tests show that no residual oxygen remains from the primary O-beam used for age determination. Spot to spot precision (2 s.d.) on standards ranged from ± 0.2 to $\pm 0.6\%$ (depending inversely on spot size). Grains with detailed transects were imaged by SEM (CL & BSE) following analysis to locate beam pits with respect to the core/rim boundary and to check for cracks or inclusions.

Fig DR1. Moser et al.

Inverted and normal greyscale CL images of Grain 4 (bottom) and Grain 6 illustrating the broadly concentric nature of zoning in the metamorphic rims surrounding detrital magmatic cores. Fig. 3a and 3b are composites of conventional CL images of the cores and inverted CL images of the low CL emission rims. The locations of the dashed core-rim boundaries in Fig. 3 are based upon the core rim boundaries in the inverted images. Note that the CL banding in the rims is broadly concentric to the detrital core, whether the core-rim boundary is parallel to igneous CL zoning, locally truncates this zoning on curved surfaces, or whether the boundary constitutes partly rounded tips and edges of the detrital core.

Moser et al. TABLE DR1

			# of multi-spot				Pb204corr
		-	δ180				207r
Sample No.	δ18Ocorr*	2sd error**	analyses***	207/206 age	2sd error	Conc(%)	/206r
Igneous Detrital Cores	_						
KAP05-32 G 1	5.44	0.29	2	2750	2	4 4	0.1909
KAP05-32-G3c	6.65	0.54	2	2696	3	2 -2	.1847
KAP05-32 G4	5.93	0.33	7	2687	2	6 4	.1838
KAP-1 KO5-32 c 11-1	6.32	0.29		2753	2	6 9	.1913
KAP-1 KO5-32 c 12-1	6.23	0.19		2672	2	0 1	.1821
KAP05-32 G13	5.69	0.52	12	2710	2	2 2	.1863
KAP-1 K05-32 c 14-1	6.54	0.33		2682	2	4 3	.1831
KAP05-32 G15a	5.83	0.56	3	2674	4	4 1	.1824
KAP05-32 G15b	5.6	0.23	3	2702	2	4 5	.1854
KAP05-32 G16a	5.3	0.25	3	2746	3	2 -3	.1904
KAP05-32 G16b	6.4	0.59	7	2678	3	0 -1	.1829
KAP-1 K05-32 c 17-1	5.87	0.25		2742	2	0 7	.1900
KAP-1 K05-32 c18-1	6.64	0.25		2715	3	4 4	.1869
KAP05-32 G19-1	5.9	0.25		2783	3	0 0	.1948
KAP05-32 G19-2	6.2	0.25		2690	2	8 4	.1841
KAP05-32 G19-3	6.1	0.25		2835	5	2 2	.2011
KAP05-32 G20	6.38	0.29	2	2697	3	2 2	.1849
КАР-1 КО5-32 с 21-1	5.9	0.29		2692	1	0 4	.1843
KAP05-32 G22	6.1	0.33	2	2684	2	8 0	.1834
KAP-1 KO5-32 c 23-1	7.04	0.23		2682	3	2 0	.1832
KAP05-32 G24	5.96	0.45	5	2711	1	6 0	.1864
KAP-1 K05-32 c 26-1	6.45	0.25		2706	2	4 2	.1859
KAP05-32 G27-2	7	0.42	9	2765	2	8 6	.1927
KAP05-32 G27-4	5.85	0.42	5	2827	1	6 5	.2001
KAP-1 K05 32 c 28 -1	5.79	0.33		2689	2	0 -1	.1840
KAP-1 K05-32 c 29-1	5.58	0.25		2708	4	2 3	.1861
KAP-1 K05-32 mc 31-1	9.14	0.49		2732	1	4 4	.1889
KAP-1 K05-32 mc 32-1	5.75	0.49		2691	2	8 -1	.1842
KAP05-32 G32.2R	5.4	0.49		2695	1	4 5	.1847
KAP-1 K05-32 c 35-1	6.97	0.49		2684	2	<mark>6</mark> 2	.1835
KAP-1 K05-32 c 37-1	5.56	0.39		2731	2	4 4	.1888
КАР-1 К05-32 с 38-1	5.9	0.39		2682	2	4 -4	.1832
KAP-1 K05-32 mc 39-1	5.76	0.39		2710	2	2 7	.1863
KAP-1 K05-32 c 41-1	6.78	0.39		2712	1	6 -1	.1866
KAP05-32 G42	5.74	0.61	7	2698	1	8 1	.1850
KAP-1 K05-32 c 43-1	5.14	0.39		2736	3	6 0	.1893
KAP05-32 G44	6.35	0.57	10	2713	3	0 6	.1867
KAP-1 K05-32 c 45-1	5.74	0.36		2688	4	6 0	1838
KAP-1 K05-32 c 46-1	6.86	0.36		2869	13	6 2	2053
KAP-1 K05-32 c 47-1	6.25	0.36		2662		6 7	1810
KAP-1 K05-32 c 50-1	5.97	0.36		2681	2	6, 7	1830
KAP-1 K05-32 c 51-1	5 49	0.50		2001	- 1	6 -4	1868
KAP-1 K05-32 c 53-1	6 56	0.45		2,14	2		1824
KAP-1 K05-32 c 57-1	6.07	0.45		2675	5	- 0 4 7	1789
KΔP-1 K05-32 c 59-1	6.67	0.29		2070	2	. 2 0 ວ	1820
KΔD-1 K05-32 c 53-1	6.02 6.47	0.29		2073	2	0 1	1820
KΔD-1 K05-32 C 01-1	0.47	0.29		20/1	כ ר	۰ ۱	1920
avg.	6.22	0.28		2710.9	2 31.3	1 2.2	.1020
Metamorphic Rims							

Sample No.

δ18Ocorr* 2sd error** 207/206 age 2sd error Conc(%)

KAP05-32 G2	8.7	0.29		2625	6	2	.1770
KAP05-32 G3	9	0.54	7	2619	20	0	.1755
KAP05-32 G4	8.74	0.19	14	2628	8	-1	.1773
KAP05-32 G5	9.41	0.19	2	2639	8	11	.1784
KAP05-32 G6m	8.8	0.59	18	2622	10	0	.1767
KAP05-32 G6o	9.6	0.43	3	2512	8	0	.1654
KAP05-32 G7	8.38	0.23		2616	10	7	.1760
KAP05-32 G8	8.57	0.23		2630	8	4	.1777
KAP05-32 G9	9.39	0.23	4	2601	8	5	.1744
KAP05-32 G10	10.02	0.33		2594	6	0	.1738
KAP05-32 G15	10.11	0.56	4	2640	4	3	.1786
KAP05-32 G27	10.04	0.45	13	2619	8	3	.1763
KAP05-32 G34	9.27	0.49		2615	10	-1	.1760
KAP05-32 G35	8.7	0.49		2612	10	1	.1756
KAP05-32 G37	10.13	0.39		2631	8	-1	.1776
KAP05-32 G39	9.14	0.39		2620	12	0	.1765
KAP05-32 G42	9.86	0.61	7	2630	8	9	.1775
KAP05-32 G43	9.32	0.39		2623	6	1	.1768
KAP05-32 G46	9.97	0.36		2635	6	1	.1781
KAP05-32 G50	8.54	0.36		2619	10	2	.1763
KAP05-32 G53	9.61	0.45		2620	10	1	.1764
KAP05-32 G56	9.98	0.45		2623	14	5	.1768
KAP05-32 G57	10	0.29		2659	8	5	.1807
KAP05-32 G59	10.18	0.29		2606	10	5	.1750
KAP05032 G61	9.38	0.29		2617	16	0	.1761
KAP05-32 G63	9.93	0.28		2620	8	3	.1764
avg.				2618	9.45	2.5	
Altered cores below							
A	δ18Ocorr* 2s	d error**	207	7/206 age 2sd	error F	-	40./ -
KAP05-32-G3	8.6	0.54	2	2668	18	2	.1817
KAP05-32 G6	7.7	0.43	12	2645	12	6	.1792
KAP05-32 G16c	7.4	0.59	3	2606	56	-5	.1751
						2.3	

*Oxygen isotope analyses corrected with respect to measured δ 180 values of bracketing standards, and reported in permil rel: ** 2 standard deviation errors assigned for single analyses are reproducibility of bracketing standard; those for multiple analys *** δ 180 values reported for rims or cores with multi-spot analyses are averages of these analyses

	Pb204corr	1	Pb204corr					
%	207r	%	206r	%	err			
err	/235	err	/238	err	corr U (ppr	m) T	h (ppm)	Th/U
0.7	13.27	1.2	0.5042	1.0	0.810	56	20	0.36
1.0	13.53	1.3	.5312	0.8	.625	209	172	0.82
0.8	12.40	1.2	.4895	0.9	.759	68	49	0.72
0.8	12.65	1.4	.4797	1.2	.821	42	20	0.48
0.6	12.69	1.0	.5054	0.8	.795	80	50	0.62
0.7	13.15	1.1	.5119	0.9	.816	56	14	0.25
0.7	12.59	1.3	.4984	1.0	.817	45	43	0.97
1.4	12.75	2.2	.5071	1.7	.786	29	18	0.62
0.8	12.50	1.2	.4890	1.0	.796	58	36	0.62
1.0	14.44	1.7	.5499	1.4	.823	55	19	0.33
1.2	11.81	1.5	.4684	0.9	.607	69	39	0.57
0.6	12.83	1.0	.4896	0.8	.818	78	43	0.56
1.0	12.89	1.6	.5003	1.3	.778	30	13	0.44
0.9	14.47	1.6	.5389	1.3	.814	31	12	0.39
0.8	12.56	1.2	.4951	0.9	.744	49	14	0.28
1.6	14.96	2.7	.5396	2.2	.805	12	4	0.37
1.0	12.90	1.6	.5060	1.2	.774	33	14	0.42
0.3	12.53	0.7	.4932	0.6	.871	298	244	0.82
0.8	12.99	1.4	.5137	1.2	.819	50	24	0.49
0.9	12.98	1.7	.5140	1.4	.823	36	17	0.47
0.5	13.44	0.8	.5229	0.7	.826	142	71	0.50
0.8	13.09	1.3	.5109	1.0	.803	57	35	0.62
0.8	13.26	1.3	.4991	1.0	.782	65	20	0.30
0.5	14.29	0.9	.5177	0.8	.823	111	51	0.46
0.6	13.20	1.1	.5204	0.9	.809	75	53	0.71
1.3	13.00	1.9	.5064	1.5	.763	30	12	0.40
0.4	13.08	0.8	.5024	0.6	.811	230	130	0.57
0.9	13.38	1.5	.5268	1.2	.824	60	67	1.12
0.4	12.43	0.6	.4881	0.5	.794	287	238	0.83
0.8	12.82	1.2	.5069	0.9	.762	107	46	0.43
0.7	13.12	1.3	.5041	1.0	.806	90	58	0.65
0.7	13.62	1.4	.5390	1.2	.855	70	45	0.64
0.6	12.40	1.1	.4828	0.8	.793	124	63	0.51
0.5	13.61	0.7	.5290	0.6	.784	264	135	0.51
0.5	13.07	0.9	.5123	0.7	.815	165	119	0.72
1.1	13.79	2.0	.5285	1.7	.830	33	20	0.60
0.9	12.50	1.5	.4857	1.2	.811	58	49	0.84
1.4	13.12	1.8	.5176	1.0	.590	82	40	0.48
4.2	15.52	6.1	.5483	4.5	.730	72	90	1.25
0.8	11.82	1.3	.4737	1.0	.798	63	21	0.33
0.8	12.52	1.3	.4962	1.1	.812	58	21	0.37
0.5	14.17	0.8	.5501	0.7	.803	170	63	0.37
0.8	12.97	1.3	.5154	1.1	.814	53	32	0.61
1.6	12.20	2.0	.4944	1.1	.570	55	23	0.42
0.6	12.68	1.1	.5026	0.8	.800	95	176	1.86
0.9	12.67	1.6	.5047	1.2	.801	47	34	0.72
0.7	11.78	1.1	.4697	0.9	.767	100	33	0.33
·						104	56	0.54

0.2	11.85	0.4	.4858	0.3	.838	633	57	0.09
0.2	12.15	0.4	.5019	0.3	.808	490	46	0.09
0.2	12.43	0.4	.5084	0.3	.814	496	52	0.11
0.2	10.94	0.6	.4448	0.5	.918	604	67	0.11
0.3	12.30	0.4	.5048	0.3	.685	595	54	0.09
0.2	10.82	0.4	.4746	0.3	.794	558	16	0.03
0.3	11.16	0.5	.4598	0.4	.755	466	47	0.10
0.2	12.01	0.4	.4902	0.3	.798	461	41	0.09
0.2	11.24	0.4	.4675	0.3	.751	666	24	0.04
0.2	11.91	0.3	.4970	0.3	.805	805	24	0.03
0.1	11.97	0.3	.4859	0.2	.806	1460	32	0.02
0.2	11.81	0.4	.4857	0.3	.803	721	16	0.02
0.3	12.33	0.5	.5080	0.4	.813	448	38	0.09
0.3	11.95	0.5	.4937	0.4	.813	609	51	0.08
0.3	12.46	0.4	.5087	0.3	.780	800	15	0.02
0.4	12.15	0.6	.4994	0.4	.741	516	49	0.09
0.2	11.05	0.3	.4517	0.2	.731	1538	67	0.04
0.2	12.06	0.3	.4946	0.2	.712	2678	27	0.01
0.2	12.19	0.3	.4965	0.2	.808	1165	14	0.01
0.3	11.90	0.5	.4896	0.4	.809	489	39	0.08
0.3	12.05	0.4	.4954	0.3	.721	751	12	0.02
0.4	11.59	0.6	.4757	0.4	.639	506	15	0.03
0.3	11.97	0.4	.4803	0.3	.779	640	16	0.02
0.3	11.30	0.5	.4684	0.4	.799	647	16	0.02
0.5	12.22	0.6	.5034	0.3	.546	613	74	0.12
0.3	11.75	0.4	.4829	0.4	.805	544	45	0.08
						765	37	0.05
0.6	12.49	0.7	.4988	0.5	.658	209	172	0.82
0.4	11.60	0.6	.4694	0.4	.757	315	206	0.65
1.7	12.84	2.1	.5317	1.3	.608	54	10	0.19

ative to VSMOW.

ses are the largest 2 standard deviation error of multiple analyses.

Temp @ Ti act.=.7

707-682
706-662
682
740
600
705-666
678
687
684

703-694

739

Moser et al. TABLE DR2 Detailed oxygen isotope data for KAP05-32 Grain 4

					∃eam	
Sample	e *		$\delta^{18}O_corr**$	2S error***	size	Run No.
KAP-1	KO5-32	c 4-1	7.00	0.19	15 µm	20060726-81
KAP-1	KO5-32	c 4-2	5.48	0.19	15 µm	20060726-82
KAP-1	KO5-32	r 4-3	8.66	0.19	15 µm	20060726-83
KAP-1	KO5-32	r 4-4	8.51	0.19	15 µm	20060726-84
KAP-1	KO5-32	r 4-5	8.91	0.19	15 µm	20060726-85
KAP-1	KO5-32	r 4-6	8.85	0.19	15 µm	20060726-86
KAP-1	K05-32	c 4-7	5.60	0.33	7 µm	20060726-544
KAP-1	K05-32	c 4-8	6.08	0.33	7 µm	20060726-545
KAP-1	K05-32	c 4-9	6.23	0.33	7 µm	20060726-546
KAP-1	K05-32	c 4-10	5.43	0.33	7 µm	20060726-547
KAP-1	K05-32	c 4-11	5.71	0.33	7 µm	20060726-548
KAP-1	K05-32 r	mix 4-12	6.93	0.33	7 µm	20060726-549
KAP-1	K05-32	r 4-13	8.65	0.33	7 µm	20060726-550
KAP-1	K05-32	r 4-14	8.30	0.28	7 µm	20060726-555
KAP-1	K05-32	r 4-15	8.51	0.28	7 µm	20060726-556
KAP-1	K05-32	r 4-16	8.33	0.28	7 µm	20060726-557
KAP-1	K05-32	r 4-17	9.25	0.28	7 µm	20060726-558
KAP-1	K05-32 r	mix 4-18	6.90	0.28	7 µm	20060726-559
KAP-1	K05-32	r 4-19	9.44	0.28	7 µm	20060726-560
KAP-1	K05-32	r 4-20	8.54	0.28	7 µm	20060726-561
KAP-1	K05-32	r 4-21	8.85	0.28	7 µm	20060726-562
KAP-1	K05-32	r 4-22	8.75	0.28	7 µm	20060726-563
KAP-1	K05-32	r 4-23	8.75	0.28	7 µm	20060726-564

Detailed oxygen isotope data for KAP05-32 Grain 6

Sample	9 *		$\delta^{18}O_corr^{**}$	2S error***		Run No.
KAP-1	KO5-32	c 6-1	9.04	0.19	15 µm	20060726-91
KAP-1	K05-32	c 6-2	7.01	0.33	15 µm	20060726-96
KAP-1	K05-32	r 6-3	10.11	0.33	15 µm	20060726-97
KAP-1	K05-32	r 6-4	10.06	0.33	15 µm	20060726-98
KAP-1	K05-32	r 6-5	9.73	0.33	15 µm	20060726-99
KAP-1	K05-32	c 6-6	8.62	0.33	15 µm	20060726-100
KAP-1	K05-32	c 6-7	6.25	0.33	15 µm	20060726-101
KAP-1	K05-32	c 6-8	8.16	0.33	15 µm	20060726-102
KAP-1	K05 32	c 6-9	9.10	0.71	7 µm	20060726-427
KAP-1	K05 32	c 6-10	8.82	0.71	7 µm	20060726-428
KAP-1	K05 32	c 6-11	6.90	0.71	7 µm	20060726-429
KAP-1	K05 32	r 6-12	9.49	0.43	7 µm	20060726-496
KAP-1	K05 32	r 6-13	9.34	0.43	7 µm	20060726-497
KAP-1	K05 32	r 6-14	8.23	0.43	7 µm	20060726-498
KAP-1	K05 32	r 6-15	9.99	0.43	7 µm	20060726-499
KAP-1	K05 32 r	mix 6-16	8.01	0.43	7 µm	20060726-500
KAP-1	K05 32	c 6-17	7.15	0.43	7 µm	20060726-501
KAP-1	K05 32	c 6-18	6.62	0.43	7 µm	20060726-502
KAP-1	K05 32	c 6-19	7.84	0.43	7 µm	20060726-503

	K05 33	c 6 20	6.05	0 43	7.00	20060726 504
	K05 52	0-20	0.95	0.45	7 μπ	20000720-304
KAP-1	K05 32 r	nix 6-21	8.00	0.43	7 µm	20060726-505
KAP-1	K05-32	r 6-22	9.05	0.59	7 µm	20060726-511
KAP-1	K05-32	r 6-23	9.14	0.59	7 µm	20060726-512
KAP-1	K05-32	r 6-24	9.49	0.59	7 µm	20060726-513
KAP-1	K05-32	r 6-25	10.59	0.59	7 µm	20060726-514
KAP-1	K05-32	r 6-26	9.47	0.59	7 µm	20060726-515
KAP-1	K05-32	r 6-27	8.35	0.59	7 µm	20060726-516
KAP-1	K05-32	r 6-28	8.21	0.59	7 µm	20060726-517
KAP-1	K05-32	r 6-29	8.34	0.59	7 µm	20060726-518
KAP-1	K05-32	r 6-30	9.03	0.59	7 µm	20060726-519
KAP-1	K05-32	r 6-31	9.92	0.59	7 µm	20060726-520
KAP-1	K05-32	r 6-32	9.25	0.54	7 µm	20060726-526
KAP-1	K05-32	r 6-33	9.73	0.54	7 µm	20060726-527
KAP-1	K05-32 ı	mix 6-34	8.24	0.54	7 µm	20060726-528
KAP-1	K05-32	r 6-35	8.74	0.54	7 µm	20060726-529
KAP-1	K05-32	r 6-36	9.04	0.54	7 µm	20060726-530

*Zircon domains analyzed: c = core; r = rim; mix= beam spot overlaps core-rim boundary

Oxygen isotope data (laser fluorination), garnet, sample K05-32

paragneiss matrix	9.83
paragneiss matrix	9.76
leucosome	9.22
leucosome	9.13

Oxygen isotope analyses corrected with respect to measured δ^{18} O values of bracketing standards, and reported in permil relative to VSMOW. * 2 standard deviation errors assigned for single analyses are reproducibility of bracketing standard; those for multiple analyses are the largest 2 standard deviation error of multiple analyses.