GSA Data Repository Item

Supplementary Methods and Figures

Methods

Sampling:

The coral core was sectioned longitudinally into 7 mm thick slabs. The coral slabs were x rayed in order to expose annual density band couplets. Powdered samples for stable isotope analysis were collected using a low-speed micro drill. The slabs were sampled continuously along the corallite walls (theca), in order to avoid mixing of sample powder from different skeletal elements. Samples for oxygen isotope analysis were retrieved at approximately 1 mm increments, yielding a mean resolution of 12 samples per year.

Oxygen isotope analysis and chronology:

Coral $\delta^{18} \mathrm{O}$ was analyzed using a Thermo Finnigan Gasbench II Deltaplus at IFM-GEOMAR. The isotopic ratios are reported in \% VPDB relative to NBS 19 (analytical error is less than $0.06 \%(1 \sigma)$). The chronology was developed on the basis of the seasonal cycle in coral $\delta^{18} \mathrm{O}$, and by counting the well-developed annual density bands. The coral $\delta^{18} \mathrm{O}$-record extends from 1918 to 2004. The measured skeletal d18O minimum (maximum) was assigned to the month September (February) which represents the average seasonal SST maximum (minimum) at the study site. Linear interpolation was used in order to obtain monthly resolution for statistical analysis. The uncertainty of the age model is approximately 1-2 months in any given year. The overlapping parts of sampling transects along different thecal walls were used
to assess the reproducibility of the oxygen isotopic signal. Reproducibility is excellent (RSD: $1.45 \%, n=39)$.

Calculation of $\delta^{18} \mathrm{O}_{\text {residual }}$:

The $\delta^{18} \mathrm{O}_{\text {residual }}$ is calculated by subtracting the temperature component from measured coral $\delta^{18} \mathrm{O}$ using instrumental SST (HadISST 1.1). The resulting signal is an estimate of seawater $\delta^{18} \mathrm{O}\left(\delta^{18} \mathrm{O}_{\text {seawater }}\right)$ (Iijima et al., 2005; Linsley et al., 2006). We calculated relative changes of $\delta^{18} \mathrm{O}_{\text {seawater }}$ following the methods described in Linsley et al. (2006) and Ren et al. (2002), assuming a $\delta^{18} \mathrm{O}_{\text {coral }}$-SST relationship of -0.2 per $\mathrm{mil} / 1^{\circ} \mathrm{C}$, which corresponds to the average coral $\delta^{18} \mathrm{O}$-SST slope obtained by SST-calibrations of Porites corals from the Indo-Pacific (range: -0.18 and -0.22 per mil per $1^{\circ} \mathrm{C}$ (Gagan et al., 1994; Juillet-Leclerc and Schmidt, 2001; Weber and Woodhead, 1972; Wellington et al., 1996)), and a Diploria strigosa coral from the Atlantic (range: -0.18 and -0.20 per mil per $1^{\circ} \mathrm{C}$ (Hetzinger et al., 2006)). We centered the $\delta^{18} \mathrm{O}_{\text {residual }}$ and smoothed the time series with an 11 point running mean.

Significance of correlations:

All shown correlations were computed using ordinary least squares regression with zero-lag. The significance levels reported were determined using a very conservative estimate of the degrees of freedom ($n-2$) after taking into account the autocorrelation of the time series. The significance levels were estimated at: http://www.met.rdg.ac.uk/cag/stats/corr.html.

Calculation of mean errors:

The measurement errors of any two isotopic determinations are independent, and the mean error reduces according to the formula: $\sigma_{\text {Total }}=\left(\sigma^{2} / \mathrm{N}\right)^{1 / 2}$; where N is the number of independent measurements and σ the analytical error. For annual mean $\delta^{18} \mathrm{O}$ values calculated
from twelve monthly values, the total analytical uncertainty reduces to $\pm 0.017 \%$. For 11 -year averages the uncertainty reduces to $\pm 0.005 \%$, respectively.

Legends for supplementary figures DR1 and DR2:

Figure DR1. Oceanographic setting of the western tropical Atlantic and Caribbean region showing major surface currents. The small box indicates the location of the study site. The inlet shows the location map of the Los Roques Archipelago. The sampling locality „Cayo Sal" is marked by a red circle. Major surface currents are indicated based on data from Gordon (1967): CAC: Caribbean Current; FC: Florida Current; NBC: North Brazil Current; GC: Guyana Current; NEC: North Equatorial Current. The inlet-image was obtained at http://eol.jsc.nasa.gov and is courtesy of the Earth Sciences and Image Analysis Laboratory, NASA Johnson Space Center.

Figure DR2. X-radiograph prints of slabs from coral core Roq6 (Diploria strigosa). Alternating high (light) and low density (dark) bands can be observed clearly and banding is in a near perpendicular orientation with respect to the axis of the coral core. In the skeletal density banding pattern, one year of coral growth is representated by one high- and lowdensity band couplet. Years indicate coral chronology. Sampling transects are indicated by red solid vertical lines on each slab. Note the goodness of fit between individual slabs.

Figure DR1

Figure DR2

Supplementary references
Gagan, M.K., Chivas, A.R., and Isdale, P.J., 1994, High-resolution isotopic records from corals using ocean temperature and mass-spawning chronometers: Earth and Planetary Science Letters, v. 121, p. 549-558.

Gordon, A.L., 1967, Circulation of the Caribbean Sea: Journal of Geophysical Research, v. 72, p. 6207-6223.

Hetzinger, S., Pfeiffer, M., Dullo, W.-C., Ruprecht, E., and Garbe-Schönberg, D., 2006, Sr/Ca and $\delta^{18} \mathrm{O}$ in a fast-growing Diploria strigosa coral: Evaluation of a new climate
archive for the tropical Atlantic: Geochemistry Geophysics Geosystems, v. 7, p. doi:10.1029/2006GC001347.

Iijima, H., Kayanne, H., Morimoto, M., and Abe, O., 2005, Interannual sea surface salinity changes in the western Pacific from 1954 to 2000 based on coral isotope analysis: Geophysical Research Letters, v. 32, p. doi:10.1029/2004GL022026.

Juillet-Leclerc, A., and Schmidt, G.A., 2001, A calibration of the oxygen isotope paleothermometer of coral aragonite from Porites: Geophysical Research Letters, v. 28, p. 4135-4138.

Linsley, B.K., Kaplan, A., Gouriou, Y., Salinger, J., deMenocal, P.B., Wellington, G.M., and Howe, S.S., 2006, Tracking the extent of the South Pacific Convergence Zone since the early 1600s: Geochemistry Geophysics Geosystems, v. 7, p. doi:10.1029/2005GC001115.

Ren, L., Linsley, B.K., Wellington, G.M., Schrag, D., and Hoegh-Guldberg, O., 2002, Deconvolving the $\delta^{18} \mathrm{O}$ seawater component from subseasonal coral $\delta^{18} \mathrm{O}$ and $\mathrm{Sr} / \mathrm{Ca}$ at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997: Geochimica et Cosmochimica Acta, v. 67, p. 1609-1621.

Weber, J.N., and Woodhead, P.M.J., 1972, Temperature dependance of oxygen-18 concentration in reef coral carbonates: Journal of Geophysical Research, v. 77, p. 463473.

Wellington, G.M., Dunbar, R.B., and Merlen, G., 1996, Calibration of stable oxygen isotope signatures in Galapagos corals: Paleoceanography, v. 11, p. 467-480.

