Data Repository Item



**Figure DR1.** Creation of paleosurface reference layer. Left panel illustrates how points (black dots) were selected where bedrock outcrops beneath the regionally-blanketing Huaylillas Ignimbrite, Elevations are defined by intersections with topographic contour lines. Right panel shows the surface spline fit to the selected points to create a representation of the (now deformed) paleosurface under the Huaylillas ignimbrite. This paleosurface shows a flat region in the upper catchment which then ramps down toward the coast. Also shown on left panel are valley-filling volcanic flows (bright red) we mapped in the field. Other volcanic units are shown in yellow. Low-temperature themochronology sample locations are shown (white dots) such that a comparison between sample locations and volcanic flows can be made. Young volcanics flows (c. 1.4 to 3.8 Ma, Thouret et al., 2005, and data presented here) dominate the landscape in the uppermost catchment and probably affected (U-Th)/He ages in that region.

TABLE DR1. APATITE (U-Th)/He INDIVIDUAL CRYSTAL DATA

| Sample   | Mass | Radius | U     | Th    | Sm    | 4He      | Ft   | Corrected age* | 2 σ <sup>†</sup> | Depth <sup>§</sup> | Distance | Elevation |
|----------|------|--------|-------|-------|-------|----------|------|----------------|------------------|--------------------|----------|-----------|
|          | (µg) | (µm)   | (ppm) | (ppm) | (ppm) | (nmol/g) |      | (Ma)           | (Ma)             | (KM)               | (ĸm)     | (m)       |
| 04TS12aA | 6.67 | 63.5   | 148   | 106   | 187   | 6.28     | 0.79 | 8.54           | 0.31             | 2.04               | 56.4     | 702       |
| 04TS12aB | 2.63 | 42.8   | 180   | 114   | 168   | 7.33     | 0.70 | 9.31           | 0.34             | 2.04               | 56.4     | 702       |
| 04TS12aC | 1.15 | 34.3   | 174   | 143   | 152   | 7.14     | 0.63 | 10.1           | 0.37             | 2.04               | 56.4     | 702       |
| 04TS12aD | 2.32 | 44.3   | 189   | 115   | 220   | 5.81     | 0.70 | 7.05           | 0.26             | 2.04               | 56.4     | 702       |
| 04TS12aE | 1.11 | 32.5   | 197   | 107   | 165   | 6.82     | 0.62 | 9.18           | 0.35             | 2.04               | 56.4     | 702       |
| 04TS12aF | 1.81 | 39.8   | 244   | 156   | 225   | 8.07     | 0.68 | 7.85           | 0.29             | 2.04               | 56.4     | 702       |
| 04TS13aA | 1.08 | 32.3   | 84.8  | 53.8  | 179   | 7.17     | 0.62 | 22.1           | 0.83             | 1.85               | 51.7     | 552       |
| 04TS13aB | 1.34 | 32.3   | 81.7  | 49.2  | 145   | 4.90     | 0.63 | 15.5           | 0.60             | 1.85               | 51.7     | 552       |
| 04TS17aA | 4.42 | 47.0   | 9.39  | 100   | 309   | 7.76     | 0.71 | 60.0           | 1.98             | 1.01               | 27.7     | 290       |
| 04TS17aB | 3.04 | 41.3   | 11.2  | 109   | 318   | 8.15     | 0.68 | 59.2           | 1.97             | 1.01               | 27.7     | 290       |
| 04TS17aC | 2.53 | 45.3   | 14.7  | 98.0  | 283   | 10.1     | 0.69 | 70.2           | 2.32             | 1.01               | 27.7     | 290       |
| 04TS17aD | 2.97 | 45.8   | 8.83  | 94.7  | 279   | 6.99     | 0.70 | 58.7           | 2.00             | 1.01               | 27.7     | 290       |
| 04TS18aA | 2.21 | 40.3   | 4.72  | 31.8  | 138   | 1.31     | 0.67 | 29.3           | 1.25             | 0.89               | 27.7     | 415       |
| 04TS18aB | 1.34 | 36.3   | 5.33  | 78.6  | 307   | 5.92     | 0.62 | 72.5           | 2.98             | 0.89               | 27.7     | 415       |
| 04TS21aA | 1.02 | 37.3   | 258   | 148   | 221   | 67.6     | 0.64 | 66.7           | 2.48             | 1.09               | 12.4     | 73        |
| 04TS21aB | 1.57 | 36.0   | 22.5  | 66.3  | 92.1  | 7.46     | 0.64 | 56.1           | 1.95             | 1.09               | 12.4     | 73        |
| 05TS02_A | 2.40 | 46.7   | 64.9  | 140   | 309   | 3.70     | 0.71 | 9.86           | 0.41             | 2.28               | 61.1     | 590       |
| 05TS02_B | 1.40 | 35.6   | 63.9  | 114   | 267   | 2.91     | 0.64 | 9.22           | 0.40             | 2.28               | 61.1     | 590       |
| 05TS02_C | 1.43 | 37.1   | 62.9  | 113   | 274   | 3.09     | 0.65 | 9.81           | 0.42             | 2.28               | 61.1     | 590       |
| 05TS02_D | 2.24 | 49.2   | 31.6  | 47.8  | 165   | 3.18     | 0.71 | 19.2           | 0.82             | 2.28               | 61.1     | 590       |
| 05TS09_A | 1.86 | 39.7   | 111   | 110   | 233   | 2.85     | 0.68 | 5.68           | 0.25             | 2.99               | 80.1     | 816       |
| 05TS09_B | 2.50 | 43.4   | 106   | 118   | 255   | 2.56     | 0.70 | 5.05           | 0.22             | 2.99               | 80.1     | 816       |
| 05TS09_C | 1.77 | 41.1   | 97.8  | 85.8  | 217   | 2.22     | 0.68 | 5.11           | 0.23             | 2.99               | 80.1     | 816       |
| 05TS11_A | 1.49 | 37.3   | 45.1  | 74.4  | 189   | 1.87     | 0.65 | 8.45           | 0.38             | 2.64               | 68.7     | 647       |
| 05TS11_B | 2.11 | 45.1   | 74.4  | 145   | 258   | 4.57     | 0.70 | 11.16          | 0.47             | 2.64               | 68.7     | 647       |
| 05TS11_C | 1.87 | 42.5   | 111   | 223   | 310   | 5.25     | 0.68 | 8.68           | 0.36             | 2.64               | 68.7     | 647       |
| 05TS11_D | 1.27 | 38.6   | 126   | 239   | 327   | 5.25     | 0.65 | 8.19           | 0.34             | 2.64               | 68.7     | 647       |
| 05TS39_A | 2.28 | 44.5   | 51.9  | 31.9  | 167   | 4.54     | 0.70 | 20.0           | 0.92             | 1.92               | 52.8     | 490       |
| 05TS39_B | 2.47 | 47.5   | 90.2  | 48.3  | 169   | 5.21     | 0.72 | 13.2           | 0.59             | 1.92               | 52.8     | 490       |
| 05TS39_C | 3.84 | 51.1   | 52.4  | 28.0  | 174   | 2.09     | 0.74 | 8.79           | 0.33             | 1.92               | 52.8     | 490       |
| 05TS39_D | 2.48 | 40.8   | 84.7  | 50.9  | 112   | 5.44     | 0.69 | 15.0           | 0.55             | 1.92               | 52.8     | 490       |
| 05TS39_E | 3.37 | 51.9   | 54.5  | 35.8  | 251   | 4.55     | 0.74 | 18.0           | 0.66             | 1.92               | 52.8     | 490       |

| 05TS39_F | 2.31 | 48.6 | 56.7 | 26.6 | 124 | 2.90 | 0.72 | 11.9 | 0.56 | 1.92 | 52.8  | 490  |
|----------|------|------|------|------|-----|------|------|------|------|------|-------|------|
| 05TS40_A | 1.03 | 34.9 | 108  | 97.2 | 161 | 9.42 | 0.63 | 21.2 | 0.79 | 1.92 | 52.1  | 480  |
| 05TS40_B | 1.40 | 39.2 | 119  | 98.2 | 139 | 6.82 | 0.66 | 13.4 | 0.49 | 1.92 | 52.1  | 480  |
| 05TS40_C | 0.87 | 32.1 | 143  | 85.5 | 107 | 10.1 | 0.61 | 18.8 | 0.71 | 1.92 | 52.1  | 480  |
| 05TS40_D | 1.12 | 32.6 | 141  | 49.6 | 112 | 5.24 | 0.62 | 10.2 | 0.40 | 1.92 | 52.1  | 480  |
| 05TS12_A | 1.54 | 36.9 | 1.86 | 23.2 | 473 | 0.70 | 0.63 | 26.1 | 1.54 | 1.62 | 40.0  | 360  |
| 05TS12_B | 1.41 | 40.7 | 2.79 | 22.5 | 356 | 0.36 | 0.65 | 12.1 | 0.70 | 1.62 | 40.0  | 360  |
| 05TS12_C | 1.85 | 38.9 | 2.24 | 15.4 | 337 | 0.18 | 0.65 | 7.95 | 0.62 | 1.62 | 40.0  | 360  |
| 05TS12_D | 1.80 | 46.3 | 2.43 | 8.24 | 330 | 0.38 | 0.69 | 21.5 | 1.64 | 1.62 | 40.0  | 360  |
| 05TS12_E | 2.83 | 47.9 | 1.37 | 13.9 | 380 | 0.15 | 0.70 | 7.70 | 0.77 | 1.62 | 40.0  | 360  |
| 05TS12_F | 3.12 | 49.9 | 3.22 | 16.9 | 434 | 0.88 | 0.72 | 29.2 | 1.68 | 1.62 | 40.0  | 360  |
| 05TS12_G | 2.10 | 40.7 | 1.33 | 6.67 | 377 | 0.27 | 0.67 | 22.0 | 3.73 | 1.62 | 40.0  | 360  |
| 05TS12_H | 3.03 | 50.4 | 3.37 | 24.7 | 369 | 0.91 | 0.72 | 24.4 | 1.23 | 1.62 | 40.0  | 360  |
| 05TS37_A | 3.57 | 48.6 | 10.9 | 23.3 | 151 | 0.60 | 0.73 | 9.15 | 0.39 | 3.08 | 84.5  | 852  |
| 05TS37_B | 3.26 | 42.4 | 12.6 | 32.2 | 186 | 0.48 | 0.70 | 6.26 | 0.24 | 3.08 | 84.5  | 852  |
| 05TS37_C | 2.81 | 43.7 | 13.7 | 37.2 | 189 | 0.48 | 0.70 | 5.60 | 0.23 | 3.08 | 84.5  | 852  |
| 05TS37_D | 1.88 | 40.8 | 8.01 | 15.9 | 134 | 0.28 | 0.68 | 6.42 | 0.52 | 3.08 | 84.5  | 852  |
| 05TS07_A | 3.69 | 44.1 | 13.8 | 19.3 | 144 | 0.27 | 0.71 | 3.79 | 1.43 | 3.13 | 90.2  | 940  |
| 05TS07_B | 2.93 | 42.3 | 14.9 | 16.4 | 85  | 0.26 | 0.70 | 3.66 | 1.40 | 3.13 | 90.2  | 940  |
| 05TS07_C | 2.98 | 48.9 | 17.1 | 20.9 | 149 | 0.34 | 0.73 | 3.87 | 1.45 | 3.13 | 90.2  | 940  |
| 05TS07_D | 5.62 | 51.4 | 8.33 | 10.7 | 104 | 0.18 | 0.75 | 4.10 | 1.50 | 3.13 | 90.2  | 940  |
| 05TS35_A | 3.28 | 45.7 | 70.1 | 134  | 169 | 0.78 | 0.72 | 1.97 | 0.07 | 3.00 | 96.9  | 1028 |
| 05TS35_B | 2.76 | 47.5 | 86.5 | 167  | 177 | 0.90 | 0.72 | 1.84 | 0.06 | 3.00 | 96.9  | 1028 |
| 05TS35_C | 3.41 | 46.4 | 68.5 | 136  | 141 | 0.84 | 0.72 | 2.16 | 0.07 | 3.00 | 96.9  | 1028 |
| 05TS35_D | 4.17 | 53.5 | 68.5 | 108  | 136 | 0.71 | 0.75 | 1.86 | 0.06 | 3.00 | 96.9  | 1028 |
| 05TS30_A | 1.30 | 36.9 | 62.2 | 318  | 149 | 0.78 | 0.63 | 1.66 | 0.08 | 2.60 | 108.6 | 1355 |
| 05TS30_B | 1.43 | 37.8 | 48.2 | 212  | 132 | 0.30 | 0.64 | 0.88 | 0.05 | 2.60 | 108.6 | 1355 |
| 05TS30_C | 1.01 | 35.7 | 60.8 | 274  | 138 | 0.42 | 0.61 | 1.01 | 0.07 | 2.60 | 108.6 | 1355 |
| 05TS23_A | 1.48 | 40.8 | 10.5 | 37.3 | 184 | 0.04 | 0.66 | 0.53 | 0.18 | 1.41 | 139.8 | 2580 |
| 05TS23_B | 1.31 | 36.6 | 12.1 | 44.3 | 228 | 0.07 | 0.64 | 0.86 | 0.17 | 1.41 | 139.8 | 2580 |

\*Alpha-ejection corrected age; values shaded gray are outliers not plotted in results. "Outliers" were defined based on microscopic inclusions or cracks that were suspected could affect the age; others did not have visible flaws but had ages that were far from the rest of the population of grains analyzed. This can come about for a number of different reasons, such as strong zoning in U and Th, errors in the alpha-ejection correction, radiation damage affecting diffusion characteristics of the grain, He-implantations from adjacent crystal phases in the host rock, etc.

†Error includes analytical precision only; in reality errors noted previously are likely to contribute to uncertainty.

§Depth below paleosurface. Error on this values is estimated to be +/- 100 m.

| Sample    | Th/U | Mass<br>(µg) | Radius<br>(µm) | U<br>(ppm) | Th<br>(ppm) | <sup>4</sup> He<br>(nmol/g) | Ft   | Corrected age*<br>(Ma) | 2 σ <sup>†</sup><br>(Ma) | Distance<br>(km) | Depth <sup>§</sup><br>(km) | Elevation<br>(m) |
|-----------|------|--------------|----------------|------------|-------------|-----------------------------|------|------------------------|--------------------------|------------------|----------------------------|------------------|
| 04TS13z_B | 0.47 | 2.92         | 38.3           | 233        | 106         | 90.9                        | 0.73 | 88.9                   | 4.50                     | 51.7             | 0.19                       | 552              |
| 04TS13z_A | 0.63 | 3.31         | 37.5           | 277        | 169         | 125                         | 0.73 | 99.0                   | 4.95                     | 51.7             | 0.19                       | 552              |
| 04TS16z_A | 2.79 | 14.7         | 59.8           | 94.5       | 257         | 110                         | 0.82 | 158                    | 7.28                     | 27.7             | 0.14                       | 225              |
| 04TS16z_B | 0.55 | 14.7         | 65.3           | 170        | 91.4        | 134                         | 0.84 | 153                    | 7.67                     | 27.7             | 0.14                       | 225              |
| 04TS18z_A | 2.78 | 7.80         | 56.8           | 56.5       | 153         | 74.3                        | 0.81 | 182                    | 8.34                     | 27.7             | 0.89                       | 415              |
| 04TS18z_B | 1.31 | 6.82         | 57.3           | 122        | 156         | 121                         | 0.81 | 173                    | 8.23                     | 27.7             | 0.89                       | 415              |
| 04TS20z_A | 1.16 | 2.22         | 37.5           | 200        | 227         | 210                         | 0.72 | 210                    | 9.86                     | 20.0             | 0.66                       | 650              |
| 04TS20z_B | 1.46 | 4.14         | 51.5           | 123        | 174         | 123                         | 0.78 | 177                    | 8.13                     | 20.0             | 0.66                       | 650              |
| 05TS02z_A | 0.83 | 14.5         | 54.7           | 206        | 166         | 87.3                        | 0.82 | 79.9                   | 3.78                     | 61.1             | 2.28                       | 590              |
| 05TS02z_B | 0.48 | 8.21         | 50.4           | 340        | 160         | 143                         | 0.80 | 87.5                   | 4.29                     | 61.1             | 2.28                       | 590              |
| 05TS07z_A | 0.52 | 13.3         | 55.3           | 228        | 115         | 53.0                        | 0.82 | 46.7                   | 2.25                     | 90.2             | 3.13                       | 939              |
| 05TS07z_B | 0.43 | 12.5         | 54.3           | 195        | 80.8        | 40.7                        | 0.82 | 43.1                   | 2.13                     | 90.2             | 3.13                       | 939              |
| 05TS09z_A | 0.63 | 12.4         | 63.9           | 365        | 223         | 116                         | 0.83 | 61.7                   | 2.99                     | 80.1             | 2.99                       | 816              |
| 05TS09z_B | 1.41 | 10.3         | 56.2           | 600        | 823         | 319                         | 0.81 | 91.2                   | 4.17                     | 80.1             | 2.99                       | 816              |
| 05TS11z_A | 0.46 | 43.8         | 80.4           | 294        | 132         | 110                         | 0.88 | 71.2                   | 3.49                     | 68.7             | 2.64                       | 647              |
| 05TS11z_B | 0.58 | 52.8         | 93.0           | 202        | 114         | 80.2                        | 0.89 | 72.8                   | 3.51                     | 68.7             | 2.64                       | 647              |
| 05TS12z_A | 1.14 | 20.8         | 67.0           | 57.7       | 64.3        | 36.7                        | 0.85 | 110                    | 4.76                     | 40.0             | 1.62                       | 360              |
| 05TS12z_B | 0.66 | 17.7         | 59.7           | 111        | 71.3        | 71.3                        | 0.84 | 123                    | 5.63                     | 40.0             | 1.62                       | 360              |
| 04TS12zA  | 0.72 | 5.25         | 43.5           | 269        | 188         | 101                         | 0.77 | 77.4                   | 2.83                     | 56.4             | 2.04                       | 702              |
| 04TS12zB  | 0.89 | 6.78         | 42.5           | 194        | 168         | 81.5                        | 0.77 | 83.4                   | 2.94                     | 56.4             | 2.04                       | 720              |
| 04TS15zA  | 0.27 | 2.65         | 40.8           | 408        | 108         | 201                         | 0.75 | 115                    | 4.44                     | 36.7             | 1.62                       | 322              |
| 04TS15zB  | 0.32 | 1.98         | 40.5           | 361        | 111         | 151                         | 0.73 | 98.4                   | 3.83                     | 36.7             | 1.62                       | 322              |
| 04TS21zA  | 0.82 | 14.6         | 52.5           | 78.8       | 62.7        | 57.3                        | 0.82 | 138                    | 4.90                     | 12.4             | 1.09                       | 73               |
| 04TS21zB  | 1.26 | 6.96         | 48.3           | 61.7       | 75.6        | 52.3                        | 0.78 | 155                    | 5.34                     | 12.4             | 1.09                       | 73               |

TABLE DR2. ZIRCON (U-Th)/He INDIVIDUAL CRYSTAL DATA

\* Alpha-ejection corrected ages.

†Error includes analytical precision only; in reality, zoning in U and Th and crystal measurement error also likely contribute to uncertainty. §Depth below paleosurface. Error on this measurement is estimated to be +/- 100 m.

| Information on Analysis                                        | Weig                                | hted Average                        | Analys | Inverse Isochron Analysis |       |                                     |              |                    |                                     |
|----------------------------------------------------------------|-------------------------------------|-------------------------------------|--------|---------------------------|-------|-------------------------------------|--------------|--------------------|-------------------------------------|
| Laser-Fusion                                                   | 40(r)/39(k) ± 2σ                    | Age ±2σ<br>(Ma)                     | MSWD   | 39Ar(k)<br>(%,n)          | K/Ca  | 40(a)/36(a) ± 2σ                    | 40(r)/39(k)  | ± 2σ               | Age ±2σ<br>(Ma)                     |
| Sample 05TS03<br>Material Feldspar                             | 1.360 <sup>± 0.036</sup><br>± 2.64% | 1.865 ± 0.050<br>± 2.65%            | 1.12   | 84.0<br>11 of 13          | 0.746 | 295.3 <sup>± 16.8</sup><br>± 5.699  | 6 1.361      | ± 0.081<br>± 5.93% | 1.867 ± 0.111<br>± 5.94%            |
| Sample 05TS04<br>Material Feldspar                             | 1.413 <sup>± 0.015</sup><br>± 1.03% | 1.937 ± 0.021<br>± 1.07%            | 1.13   | 84.4<br>20 of 23          | 0.872 | 327.8 ± 27.6<br>± 8.419             | 6 1.387      | ± 0.027<br>± 1.91% | 1.901 ± 0.037<br>± 1.94%            |
| Sample 05TS04<br>Material Feldspar                             | 1.385 <sup>± 0.015</sup><br>± 1.06% | 1.930 <sup>± 0.021</sup><br>± 1.08% | 1.04   | 100.0<br>16 of 16         | 1.137 | 290.7 <sup>± 12.56</sup><br>± 4.329 | 6 1.390<br>6 | ± 0.019<br>± 1.40% | 1.937 <sup>± 0.027</sup><br>± 1.41% |
|                                                                | Wtd. Mean Age:                      | 1.934 <sup>± 0.015</sup><br>± 0.78% | 0.05   |                           |       |                                     |              |                    |                                     |
| Sample 05TS25<br>Material Sanidine                             | 2.802 ± 0.008<br>± 0.30%            | 3.825 ± 0.016<br>± 0.42%            | 1.49   | 100.0<br>18 of 18         | 14.49 | 285.7 <sup>± 10.1</sup><br>± 3.55%  | 2.809        | ± 0.011<br>± 0.37% | 3.834 ± 0.018<br>± 0.48%            |
| Sample 04TS10<br>Material Sanidine                             | 4.334 ± 0.008<br>± 0.18%            | 14.20 ± 0.04<br>± 0.27%             | 1.29   | 100.0<br>12 of 12         | 70.8  | 291.1 <sup>± 8.5</sup><br>± 2.919   | 4.336        | ± 0.009<br>± 0.21% | 14.21 ± 0.04<br>± 0.29%             |
| Sample 04TS22<br>Material Sanidine                             | 4.373 <sup>± 0.010</sup><br>± 0.23% | 14.29 <sup>± 0.04</sup><br>± 0.30%  | 2.00   | 100.0<br>11 of 11         | 50.2  | 294.3 ± 47.0<br>± 16.09             | 4.374        | ± 0.014<br>± 0.31% | 14.30 <sup>± 0.05</sup><br>± 0.37%  |
| Sample 05TS43<br>Material Sanidine                             | 11.57 <sup>± 0.013</sup><br>± 11.0% | 16.12 <sup>± 0.04</sup><br>± 0.23%  | 0.82   | 100.0<br>20 of 20         | 59.3  | 272.1 ± 68.2<br>± 25.19             | 6 11.576     | ± 0.027<br>± 0.23% | 16.13 ± 0.05<br>± 0.30%             |
| Furnace Step-<br>Heating                                       | 40(r)/39(k) ±2σ                     | Age ±2σ<br>(Ma)                     | MSWD   | 39Ar(k)<br>(%,n)          | K/Ca  | 40(a)/36(a) ± 2σ                    | 40(r)/39(k)  | ± 2σ               | Age ±2σ<br>(Ma)                     |
| Sample 05TS08<br>Material Gndmass                              | 1.597 ± 0.007<br>± 0.44%            | 2.196 ± 0.012<br>± 0.53%            | 0.96   | 93.7<br>13 of 17          | 0.651 | 295.2 ± 2.5<br>± 0.85%              | 6 1.598      | ± 0.010<br>± 0.63% | 2.197 ± 0.015<br>± 0.69%            |
| Sample 05TS38<br>Material Gndmass                              | 1.663 <sup>± 0.057</sup><br>± 3.42% | 2.284 ± 0.079<br>± 3.44%            | 0.78   | 80.4<br>12 of 16          | 0.826 | 293.7 <sup>± 3.6</sup><br>± 1.219   | 6 1.727      | ± 0.140<br>± 8.13% | 2.373 ± 0.193<br>± 8.13%            |
| Sample 05TS38<br>Material Gndmass                              | 1.669 <sup>± 0.041</sup><br>± 2.45% | 2.249 ± 0.056<br>± 2.47%            | 0.64   | 84.7<br>21 of 27          | 0.799 | 293.1 <sup>± 2.8</sup><br>± 0.97%   | 6 1.754      | ± 0.106<br>± 6.03% | 2.363 ± 0.143<br>± 6.04%            |
|                                                                | Wtd. Mean Age:                      | 2.261 ± 0.046<br>± 2.03%            | 0.13   |                           |       |                                     |              |                    |                                     |
| Note: All ages reported relative to TCR-2a Sanidine @ 28.34 Ma |                                     |                                     |        |                           |       |                                     |              |                    |                                     |

TABLE DR3. <sup>40</sup>Ar/<sup>39</sup>Ar DATA FOR VALLEY-FILLING VOLCANIC FLOWS AND HUAYLILLAS IGNIMBRITE

## TABLE DR4. LOCATION AND CONTEXT FOR SAMPLES DATED WITH $^{40}\mathrm{Ar/}^{39}\mathrm{Ar}$

| Sample | Description                                                                                                  | Age ± 2 σ<br>(Ma)        | Ht. above river<br>(m) | Latitude<br>(°S) | Longitude<br>(°W) |
|--------|--------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|------------------|-------------------|
| 05TS03 | Feldspar from basal vitrophyre ash; Cotahuasi valley fill                                                    | 1.865 ± 0.09             | 50 400                 | 15°33'48.91"     | 73°06'16.22"      |
| 05TS04 | Feldspar from basal vitrophyre obsidian; Cotahuasi valley fill                                               | 1.934 ± 0.0 <sup>-</sup> | 15 400                 | 15°33'48.91"     | 73°06'16.22"      |
| 05TS25 | Sanidine from base of welded<br>tuff in-filling upper Cotahuasi<br>valley                                    | 3.825 ± 0.0              | 16 450                 | 15°12'41.86"     | 72°52'49.87"      |
| 04TS10 | Sanidine from Huaylillas Fm.,<br>near town of Aplao                                                          | 14.20 ± 0.04             | 4 n/a                  | 16°14'45.83"     | 72°30'06.56"      |
| 04TS22 | Sanidine from Huaylillas Fm.,<br>north of Aplao                                                              | 14.29 ± 0.04             | 1 n/a                  | 15°57'20.85"     | 72°34'59.70"      |
| 05TS08 | Andesite groundmass, from<br>andesite valley fill near<br>Chaucalla                                          | 2.196 ± 0.07             | 12 450                 | 15°35'31.51"     | 73°04'05.70"      |
| 05TS43 | Sanidine from undeformed ignimbrite<br>crossing range front fault zone 100<br>km SE of Cotahuasi range front | 16.12 ± 0.04             | 4 n/a                  | 16°11'16.08"     | 72°01'36.33"      |
| 05TS38 | Basaltic andesite groundmass from valley fill near Llauce                                                    | 2.261 ± 0.05             | 56 125                 | 15°39'28.30"     | 73°04'35.36"      |

## TABLE DR5. PARAMETERS USED IN THERMAL MODEL CALCULATIONS AND RESULTS

| Parameter used in model                                                         | 20°C/km run | 30°C/km run |
|---------------------------------------------------------------------------------|-------------|-------------|
| Diffusion radius (micrometers)*:                                                | 60          | 60          |
| Activation energy for closure temperature (kJ/mol)*:                            | 138         | 138         |
| Normalized frequency factor, $\Omega(s^{-1})^*$ :                               | 7.64E+07    | 7.64E+07    |
| Thermal parameters:                                                             |             |             |
| Layer depth to constant temperature (km) <sup>†</sup> :                         | 60          | 60          |
| Thermal diffusivity (km²/my) <sup>§</sup> :                                     | 30          | 30          |
| Internal heat production (°C/my) <sup>§</sup> :                                 | 8           | 8           |
| Surface temperature (°C):                                                       | 10          | 10          |
| Predicted temperature at base of layer (°C) <sup>#</sup> :                      | 730         | 1330        |
| Estimates assuming steady-state heat flux and no erosion:                       |             |             |
| Surface thermal gradient (°C/km):                                               | 20          | 30          |
| Estimate for volumetric heat production (mW/m <sup>3</sup> ):                   | 0.583       | 0.583       |
| Estimate for thermal conductivity (W/(m*Kelvin)):                               | 2.186       | 2.186       |
| Predicted surface heat flux (mW/m <sup>2</sup> ) <sup>#</sup> :                 | 43.73       | 65.59       |
| Crustal avg. product of thermal conductivity and density (kJ/ (Kelvin* $m^3$ )) | 2300        | 2300        |
| AGE2EDOT results:                                                               |             |             |
| Erosion rate (km/myr):                                                          | 0.7         | 0.5         |
| Depth to closure temperature (km):                                              | 2.0         | 1.4         |
| Closure temperature (°C):                                                       | 72          | 72          |

\*Farley, K.A., 2000, Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite: Journal of Geophysical Research, v. 105, no. B2, p. 2903–2914, doi: 10.1029/1999JB900348.

<sup>†</sup>Beck, S.L., Zandt, G., Myers, S.C., Wallace, T.C., Silver, P.G., and Drake, L., 1996, Crustal-thickness variations in the central Andes: Geology, v. 24, no. 5, p. 407-410.

§Details in Brandon, M.T., Roden-Tice, M.K., Garver, J.I., 1998, Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State: GSA Bulletin, v. 110, p. 985-1009.

#Values predicted based on input parameters.