SUPPLEMENTARY FILE

Table 1: Sm and Nd contents and Sm-Nd isotopic composition of the basaltic rocks of the Antigonish Highlands. (A) new data (B) previously published in Murphy et al. (1996).

<u>Table 1A</u>			Formation Clydesdale						
Sample	Nd (ppm)	Sm (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	ε _{Nd} (610)	Т _{DM}	Easting	Northing
MS-2	29.75	7.238	0.1471	0.512724	4	5.50	747	5054455	571160
MS-4	14.10	3.659	0.1568	0.512730	4	4.90	852	5054095	570380
MS-11	14.01	3.273	0.1412	0.512525	4	2.10	1091	5050730	571050
MS-13	23.62	5.932	0.1518	0.512725	4	5.20	797	5050875	570945
MS-29B	7.38	2.402	0.1968	0.512985	4	6.76		5053025	569540
			Bears Brook			ε _{Nd} (460)			
GO4-6	25.56	5.687	0.1344	0.512587	5	2.67	885	535445	5030770
GO2-14	18.99	4.860	0.1547	0.512727	4	4.21	827	543760	5042310
GO3-11	29.09	6.468	0.1344	0.512542	5	1.79	968	544975	5044510
GO2-15	19.61	4.837	0.1492	0.512717	5	4.34	783	543770	5042255
GO2-CA	30.06	6.967	0.1401	0.512733	5	5.19	660	543805	5042230
GO4-CA	25.39	5.729	0.1364	0.512585	5	2.51	910	535450	5030623
			Dunn Point						
DP 1	22.19	5.427	0.1479	0.512706	5	3.64	794	564405	5067795
DP 2	21.65	5.266	0.1471	0.512692	4	3.40	815	564410	5067805
DP 3	17.31	4.057	0.1417	0.512678	5	3.38	786	564725	5067790
DP 4	24.35	5.606	0.1392	0.512656	4	3.07	803	564805	5067810
			McArras Brook			ε _{Nd} (370)			
MCA 1	22.64	5.428	0.1449	0.512698	6	3.62	779	561205	5064755
MCA 2	24.86	5.793	0.1409	0.512646	4	2.80	840	561200	5064750
MCA 3	43.69	8.834	0.1222	0.512588	4	2.55	769	561210	5064610
MCA 4	43.70	8.875	0.1228	0.512565	5	2.07	811	561155	5064555
MCA 5	43.66	8.819	0.1221	0.512569	4	2.18	798	560995	5064450
MCA 6	38.66	7.628	0.1193	0.512569	4	2.31	776	560955	5064225
MCA 7	14.14	3.535	0.1512	0.512686	4	3.09	880	560840	5064205
MCA 8	16.40	3.922	0.1446	0.512644	4	2.58	889	560805	5064170

Sm-Nd analytical methods for data in Table 1A

Chemical separations and isotopic analyses were determined at the Atlantic Universities Regional Isotopic Facility (AURIF), Memorial University of Newfoundland. Approximately 0.1 g of rock power was dissolved in Savillex vials using a mixture of concentrate $HF - HNO_3$ acids. A mixed ¹⁵⁰Nd/¹⁴⁹Sm spike was added to each sample prior to acid digestion. After five days of digestion, solution was evaporated to dryness and then taken up in 6 N HCl acid for two days. The solution was then dried and taken up in 2.5N HCl and loaded on cationic exchange chromatography columns using AG50W - X8 resin. The REE fraction was then purified and Sm and Nd were isolated using a secondary column loaded with Eichrom Ln resin. All reagents were distillate in order to insure a low contamination level. The measured total chemical blanks range between 40 and 90 pg.

Sm and Nd contents and Nd isotopic composition were analyzed using a multicollector Finnigan Mat 262 mass spectrometer in static mode. Nd isotopic ratios are normalized to 146 Nd/ 144 Nd = 0.7219. The reported values were adjusted to La Jolla Nd standard (143 Nd/ 144 Nd = 0.511860). During the course of data acquisition replicates of the standard gave a mean value of 143 Nd/ 144 Nd = 0.511888 ± 16 (2 σ m, n=12). The in-run precision on Nd isotopic ratios are given at 95% confidence level. Error on Nd isotopic compositions are <0.002% and errors on the 147 Sm/ 144 Nd ratio are estimated to be less than 0.1%. The 143 Nd/ 144 Nd ratios are measured by thermal ionization mass spectrometry, after chemical separation of Nd from Sm and other REE by ion-exchange chemistry. ε Nd values are relative to 143 Nd/ 144 Nd = 0.512638 and 147 Sm/ 144 Nd = 0.196593 for present day CHUR (Jacobsen and Wasserburg 1980) and lamda 147 Sm = 6.54 x 10⁻¹²/year (Steiger and Jäger, 1977). T(_{DM}) are calculated using the model of DePaolo (1981, 1988). Epsilon values at time T are calculated using:

 $\varepsilon_{Nd}^{T} = [({}^{143}Nd/{}^{144}Nd_{sample}^{T} / {}^{143}Nd/{}^{144}Nd_{CHUR}^{T}) - 1] * 10000$

where CHUR is the Chondrite Uniform Reservoir and T is the time the rock was formed. Depleted mantle model ages are calculated assuming a modern upper mantle with ¹⁴⁷Sm/¹⁴⁴Nd = 0.214 and ¹⁴³Nd/¹⁴⁴Nd = 0.513115. ε_{Nd} values are calculated for the respective crystallization ages (t = 610 Ma, Clydesdale Formation; t = 530 Ma, Arbuckle Brook Formation, t = 460 Ma, Dunn Point/Bears Brook formations; t = 370 Ma McArras Brook Formation).

Table 1B			<u>Formation</u> Clydesdale						
Sample	Nd ppm)	Sm (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	ε _{Nd} (610)	Т _{DM}	Easting	Northing
E09 145	35.85	9.24	0.156	0.51270	3	4.46	1107	570670	5056825
E09 163	27.13	6.94	0.155	0.51269	3	4.20	1114	571585	5055960
			Arbuckle Brook			ε _{Nd} (530)			
E16 375	58.83	10.91	0.112	0.51255	3	4.01	851	568910	5068190
E16 376	51.91	10.47	0.122	0.51257	3	3.70	911	568915	5068185
			Bears Brook			ε _{Nd} (460)			
GO2	24.55	6.15	0.152	0.51273	5	4.43	960	543925	5042175
GO2-12	44.69	11.49	0.155	0.51278	5	5.23	878	543940	5042150

Sm-Nd analytical methods for data in Table 1B

These data are previously published in Murphy et al., 1996. Chemical separations and isotopic analyses were determined at Carleton University, Ottawa, Ontario. Between 100 and 300 mg of sample powder were weighed into a screw-cap Teflon vial, to which a mixed ¹⁴⁸Nd-¹⁴⁹Sm spike was added. The powder-spike mixture was dissolved in HNO₃-HF, then further attacked with HNO₃ and HCl until no residue was visible. The bulk REE were separated using cation chromatography with 2.5N HCl (Dowex 50-X8). The REE-bearing residue was dissolved in 0.26N HCl and loaded into a 10-ml borosilicate glass chromatographic column containing a 2

cm-high bed of Teflon powder coated with HDEHP [di(2-ethylhexyl) orthophosphoric acid (Richard et al., 1976). Nd was eluted using 0.26N HCl, followed by Sm in 0.5N HCl.

Total procedural blanks for Nd are < 300 picograms. Concentrations are precise to $\pm 1\%$, but ¹⁴⁷Sm/¹⁴⁴Nd ratios are reproducible to 0.5%. Samples were loaded with 0.3N H₃PO₄ on one side of a Re double filament assembly, and ran at temperatures of 1780-1820°C in a 5-cup Finnigan MAT261 multicollector mass spectrometer. Isotope ratios were normalized to ¹⁴⁶Nd/¹⁴⁴Nd = 0.72190. Analyses of the USGS standard BCR-1 yield Nd = 29.02 ppm, Sm = 6.68 ppm, and ¹⁴³Nd/¹⁴⁴Nd = 0.512668 ± 20 (n=4). Over 70 runs of the La Jolla standard average ¹⁴³Nd/¹⁴⁴Nd = 0.511876 ± 18 (Sept. 1992-March 2000). Epsilon values at time T are calculated using the following relation:

 $\varepsilon_{Nd}^{T} = [({}^{143}Nd/{}^{144}Nd_{sample}^{T} / {}^{143}Nd/{}^{144}Nd_{CHUR}^{T}) - 1] * 10000$

where CHUR is the Chondrite Uniform Reservoir and T is the time the rock was formed. Depleted mantle model ages are calculated assuming a modern upper mantle with ¹⁴⁷Sm/¹⁴⁴Nd = 0.214 and ¹⁴³Nd/¹⁴⁴Nd = 0.513115. ε_{Nd} values are calculated for the respective crystallization ages (t = 610 Ma, Clydesdale Formation; t = 530 Ma, Arbuckle Brook Formation, t = 460 Ma, Bears Brook formations).

References:

- DePaolo, D.J., 1981, Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic: Nature v. 29, p. 193-196.
- DePaolo, D.J. 1988, Neodymium isotope geochemistry: an introduction: Springer Verlag, New York.
- Jacobsen, S.B., and Wasserburg, G.J., 1980, Sm-Nd evolution of chondrites: Earth and Planetary Science Letters, v. 50, p. 139-155.
- Murphy, J.B., Keppie, J.D., Dostal, J., and Cousens, B.L., 1996, Repeated lower crustal melting beneath the Antigonish Highlands, Avalon Composite Terrane, Nova Scotia: Nd isotopic evidence and tectonic implications. In: Nance, R.D., and Thompson, M.D., eds, Avalonian and related peri-Gondwanan terranes of the circum North Atlantic: Geological Society of America Special Paper, 304, p. 109-120
- Richard, P., N. Shimizu, and C. J. Allègre, 1976, ¹⁴³Nd/¹⁴⁶Nd, a natural tracer: an application to oceanic basalts: Earth and Planetary Science Science. Letters., v. 31, p. 269-278, 1976.
- Steiger, R.H., and Jäger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology: Earth and Planetary Science Letters, v. 36, p. 359-362.