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Details for Numerical Model Used in Fuller et al.

A coupled mechanical-thermal model, used in previous studies (Willett, 1992;
Willett and Pope, 2003) of collisional wedges, was modified to account for features
associated with a subduction wedge, such as accretion of a relatively thin sedimentary layer
and flexure of two elastic half plates. The subduction process is simulated with a hybrid
kinematic-dynamic method in which the subducting slab and mantle of both plates have a
prescribed motion, but the crust of the overriding plate is allowed to deformation in
response to body forces and boundary velocities. The model has two domains over which
solutions are obtained: a mechanical domain extending from the base of the crust to the
surface (Fig. DR1a), and a thermal-kinematic domain extending from the upper
asthenosphere to the surface (Fig. DR1b). Crustal deformation is calculated for a combined
frictional plastic rheology and a thermally-activated power-law viscous rheology using a
two-dimensional finite element method. Frictional plastic deformation is calculated using a
non-linear viscosity formulism that mimics the limit condition associated with the Coulomb
yield criterion. This method is capable of simulating deformation of frictional materials,
such as sand and rock, and has been verified by comparison to the analytical solutions of
the critical wedge theory (Willett, 1992; Willett and Pope, 2003).

Velocity boundary conditions drive deformation within the mechanical domain. The
basal boundary has a specified tangential velocity, equal to the convergence velocity v, to
the left of the point S, and zero to the right of S. The subduction thrust is simulated by a
thin low-strength zone located at the base of the model to the left of the point S (Fig. DR1).

The upper surface is stress free, and its position and velocity is determined
dynamically during the calculation. In Model 2 the surface is modified by sedimentation,
which occurs by filling surface depressions to capacity. Basin sediment has the same
physical properties as the subduction wedge and is assumed to be from a distal source.
Neither model includes any erosion. We recognize that sediment can be supplied by erosion
of the forearc high as it becomes subaerial; exclusion of this process does not affect the
results presented here.

The lower boundary of the mechanical domain is allowed to move vertically to
account for isostasy. The evolution of this boundary is determined using a calculation for
flexural isostasy assuming two elastic half plates that remain in contact at the point S (Fig.
2a, Fig. DR1).

Temperature is determined within the larger, thermal-kinematic domain using a
finite-element method to solve the two-dimensional, time-dependent heat transport equation
including conduction, advection, and radiogenic heat production. Heat advection is
calculated using the dynamically calculated velocity field from the mechanical domain and
a kinematically prescribed velocity for the remaining regions. The slab velocity is
prescribed at the plate convergence rate in a direction tangential to the boundary between
the two plates.

Model results presented here were run with convergence velocity v, = 50 km/Ma
and an accretionary thickness & = 2.5 km, indicating an accretionary flux of 125 km*/Ma.
The nominal time in the model is inversely proportional to the accretionary flux. For
example, our models (Fig. 2, DR2, DR3; Videos DR1, DR2) are directly applicable to a
subduction margin with half of the accretionary flux (62.5 km*/Ma) at twice the nominal
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time shown with our results. The last step shown here with = 6.4 Ma would correspond to
a time of 12.8 Ma. This scaling argument holds as long as the thermal field in the
subduction wedge remains the same, given that temperature influences the rheology. In our
experience, the thermal field is only weakly dependent on accretionary flux when perturbed
relative to the model conditions used here.
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Figure DR1: Boundary conditions and parameterization of the coupled thermo-mechanical
model used in this study. (a) The domain of the mechanical component representing the
deforming crust. The viscous rheology is characterized by a power-law exponent 7, the
activation energy Q, and pre-exponential A,. The Coulomb yield criterion is characterized
by the internal angle of friction ¢ and cohesion C. The detachment is assigned a lower
friction angle ¢y, so that it is weaker than the wedge. In the paper, we define four
parameters: two friction angles (¢ for the wedge and ¢, for the basal thrust) and two fluid
pressure parameters (A for the wedge and A, for the basal thrust). The numerical model does
not calculate fluid pressures, so @ and ¢, in the model are used as effective friction angles
that include the influence of fluid pressure. The basal boundary has an imposed tangential
velocity v,,,. To the left of the point S, v,,, = v, which is the plate convergence velocity, and
to the right of S, v,,, = 0. The evolution of the lower boundary of the dynamic model is
calculated assuming flexural isostasy for two elastic half plates with rigidities D, and D,
that are kept in contact at point S. Densities are 2800 kg/m’ for the crust, 3300 kg/m’ for the
mantle, and 1030 kg/m’ for water. (b) The domain of the thermal model, extending from
the surface to the asthenosphere. The velocity field v, used to calculate heat advection, is
taken from the velocity solution in the mechanical domain (green) described in (a), and the
kinematic velocity for the subducting lithosphere. The slab velocity is set at v, in the
direction tangent to the surface of the subducting lithosphere. The slab geometry is initially
prescribed, but subsequently allowed to evolve due to the flexural isostatic response of the
lithosphere to the changes in crustal load as described above. Radiogenic heat production H
is non-zero and uniform in the crust and zero elsewhere. The thermal conductivity & of the
upper asthenosphere is set artificially high to simulate the approximately isothermal
condition associated with a convecting mantle. Specific heat capacity ¢, is uniform
throughout the model domain.
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Figure DR2 and Video DR1: Evolution of Model 1, with no sedimentation, shown in Fig.
2b. A nominal time ¢ is shown in Ma and is calculated for a convergence velocity of 50
km/Ma and a 2.5 km thickness of accreted sediment. The colors indicate strain rate (second
invariant of the strain rate tensor). The Lagrangian mesh is a passive feature that shows the
integrated motion and deformation in the wedge. Note the persistent deformation from the
trench to the landward side of the model, as shown by the strain rate and the Lagrangian
mesh. Also note the seaward migration of the trench, growth of the subduction wedge, and
uplift of the forearc high, as described in the text. The model has no vertical exaggeration.
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Figure DR3 and Video DR2: Evolution of Model 2, including sedimentation, shown in
Fig. 2C. The nominal time, ¢, is given in Ma, using the same convergence velocity and
accretionary thickness as in Fig. DR2 and Video DR1. The synthetic stratigraphy (indicated
by white lines) shows the growth of the forearc basin. Strain rates are high seaward of the
basin, but very low beneath the basin. The model has no vertical exaggeration.
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