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Data Repository Item 

Part A: Database 

sample dg [µm] dp 
[µm]

fp  
[fraction]

Z=dp/fp 
[µm] 

T 
[C°] 

        
Gs-126-a 10.6 ± 3.2 0.81 0.065 13 356 
Gs-126-b 17.9 ± 7.0 1.31 0.003 461 356 
Gs-126-c 11.8 ± 4.8 1.00 0.039 26 356 
Gs-126-d 12.6 ± 4.7 0.75 0.036 21 356 
Gs-126-e 11.2 ± 3.7 1.06 0.061 17 356 
Gs-126-f 13.1 ± 5.1 0.64 0.021 30 356 
Gs-126-h 18.1 ± 7.5 0.71 0.001 550 356 
Gs-126-i 17.1 ± 5.7 3.45 0.013 265 356 
Gs-126-k 16.3 ± 6.2 1.83 0.033 55 356 
Gs-126-m 18.2 ± 6.6 2.90 0.025 116 356 
Gs-126-n 16.7 ± 6.0 1.40 0.012 117 356 

        
Do-28-a 12.2 ± 4.0 0.95 0.076 12 361 
Do-28-b 14.0 ± 4.9 1.10 0.076 15 361 
Do-28-c 22.4 ± 9.1 1.17 0.010 113 361 
Do-28-d 20.7 ± 10.2 1.06 0.004 281 361 
Do-28-e 18.8 ± 6.6 2.98 0.061 49 361 
Do-28-g 22.8 ± 8.1 3.79 0.006 632 361 

        
Do-24-a 25.6 ± 10.2 2.68 0.020 134 371 
Do-24-b 26.8 ± 8.8 2.36 0.011 215 371 
Do-24-c 20.2 ± 8.5 4.81 0.133 36 371 
Do-24-d 26.3 ± 10.8 1.64 0.029 56 371 
Do-24-e 20.6 ± 7.3 3.25 0.086 37 371 
Do-24-f 22.5 ± 9.3 3.17 0.074 43 371 
Do-24-g 27.2 ± 9.9 2.03 0.004 508 371 
Do-24-h 28.4 ± 11.5 3.01 0.010 301 371 
Do-24-i 21.0 ± 8.2 3.44 0.075 46 371 
Do-24-m 22.2 ± 9.5 4.3 0.126 34 371 
Do-24-n 24.9 ± 11.2 3.87 0.076 51 371 
Do-24-o 21.6 ± 9.4 3.94 0.097 41 371 
Do-24-p 23.8 ± 10.3 3.31 0.057 58 371 

        
Jung-986-a 29.4 ± 11.7 1.90 0.060 31 380 
Jung-986-b 27.0 ± 10.5 2.00 0.085 24 380 
Jung-986-c 27.1 ± 10.0 2.21 0.069 32 380 
Jung-986-d 19.7 ± 7.8 1.42 0.077 19 380 
Jung-986-e 29.0 ± 11.6 1.03 0.025 42 380 
Jung-986-f 39.0 ± 12.8 1.39 0.011 131 380 
Jung-986-g 40.6 ± 13.2 0.79 0.002 337 380 
Jung-986-h 31.4 ± 12.5 1.10 0.031 36 380 
Jung-986-i 40.2 ± 13.3 1.11 0.007 151 380 
Jung-986-m 37.4 ± 12.2 0.98 0.011 89 380 
Jung-986-k 39.7 ± 13.0 1.14 0.011 104 380 
Jung-986-n 37.0 ± 16.5 1.56 0.008 195 380 
Jung-986-o 34.3 ± 11.0 3.18 0.038 84 380 
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Table DR1: Database for Figure 2 presenting microstructural parameters of carbonate mylonites with variable second-
phase contents. Note that sheet silicates are the predominating second-phase in these samples. dg: calcite grain size, dp: 
second phase grain size, fp: second phase volume fraction, Z: Zener parameter = dp/fp, T: temperature. 
 
 
 
Part B: Equation derivations 

Temperature-dependent Zener relation 

dg = c ⋅ Z m , where Z =
dp

f p

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  eq. 2 

 

Eq. 2 relates Z [µm], as ratio of the grain size dp [µm] and the volume fraction of the 

second-phases fp, in dependence of a dimensionless exponent m and a constant c [µm1-m] 

to the size of the matrix grains dg [µm]. This equation is valid only for isothermal 

conditions but a temperature-dependence can be incorporated in the following form: 

 

dg = c'⋅exp(−Qg /RT) ⋅ Z m  eq. 3 

 

where Qg [J mol-1] is the activation energy for growth of the matrix grain and c’ [µm1-m] 

is a constant, R is the gas constant and T is the temperature. 

 

Calculation of the activation energy Qg and the constant c’ 

The basic equation 

In order to reduce first the dimensions in eq. 3, both sides of the equation are divided by 

[µm]. Then the logarithm is taken. 

 



 Herwegh et al. 3 

log dg( )= log c'( )+ m ⋅ log(Z) + (−Qg /RT) ⋅ log e( ) eq. 3.1 

 

For a specific Z value, the terms log(c’) and m·log(Z) are constant and can therefore be 

replaced by , yielding in: c ' '= log c '( )+ m ⋅ log(Z)

 

log dg( )= c' '+(−Qg /R) ⋅ log e( )⋅1/T  eq. 3.2 

 

Taking a series of dg values for different T but constant Z and plotting them in a log(dg) 

versus 1/T diagram, the slope s1 of the resulting linear trend corresponds to (-

Qg/R)·log(e). Hence, Qg can be calculated by eq. 3.3 

 

Qg = s1 ⋅ R( )/log(e)  eq. 3.3 

 

Finally, c’ can be calculated by solving eq. 3: 

 

c'= dg / Z m ⋅ exp(−Qg /RT)( ) eq. 3.4 

 

Second-phase grain growth 

The basic equation 

The data obtained from field samples subjected to different deformation temperatures 

suggest a power law relationship between dp and fp
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dp = k ⋅ f p
n  eq. 4 

 

with a dimensionless and constant exponent n and a constant k [µm]. Since second-phase 

coarsening is temperature dependent, an activation energy term can be added in the same 

manner as already done for eq. 3. 

 

dp = k'⋅exp −Qp /RT( )⋅ f p
n  eq. 5 

 

where k’ [µm] is a constant and Qp [J mol-1] the activation energy for second-phase 

growth. 

 

Calculation of the activation energy Qp and the constant k’ 

To calculate Qp, both sides of eq. 5 are divided in a first step by [µm] to eliminate the 

units and the logarithm is taken. 

 

log dp( )= log k'( )+ n ⋅ log f p( )+ −Qp /R( )⋅ log e( )⋅ (1/T)  eq. 5.1 

 

For a series of data with constant fp but different T and dp, the term log(k’)+n·log(fp) is 

constant and can be replaced by k’’: 

 

log dp( )= k' '+ −Qp /R( )⋅ log e( )⋅ (1/T)  eq. 5.2 
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Hence, in a graph log(dp) versus 1/T, the slope s2 corresponds to (-Qp/R)·log(e) allowing 

the calculation of Qp. Using the new Qp, eq. 5 can be solved for k’. 

 

The final equation 

The variable dp, which is incorporated in the Z term of eq. 3, can now be replaced by eq. 

5 resulting in: 

 

dg = c'⋅exp(−Qg /RT) ⋅
dp

f p

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

m

= c'⋅exp(−Qg /RT) ⋅
(k'⋅exp(−Qp /RT) ⋅ f p

n )
f p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m

  

 

which finally yields in:  

 

dg = c '⋅k 'm ⋅exp(−Qg /RT) ⋅ exp(−Qp /RT)( )m
⋅ f p

m(n−1) eq. 6 

 

Eq. 6 shows that dg basically depends on four parameters: (1) the constants c’ and k’, (2 

& 3) activation terms for growth of the matrix grain and growth of the second-phase and 

(4) the volume fraction of the second-phases.  

 

The role of the pre-exponential constants 

Normal grain growth for monomineralic aggregates is classically defined by: 

dg
n − dg 0

n = k ⋅ exp(−Q /RT) ⋅ (t − t0)  eq. 1 

where dg and dg0 are the final and starting grain size, respectively, n is the growth 

exponent, k a pre-exponential constant, Q an activation energy, R the gas constant, T the 



 Herwegh et al. 6 

temperature and (t-t0) the time interval during which grain growth occurred. Here, the 

pre-exponential parameter k can be subdivided into: 

k = C'
ΩDgb

δkBZT
γ  eq. 1.1 

indicating that normal grain growth also depends on parameters like a constant C’, the 

unit cell volume , the grain boundary diffusion coefficient DΩ gb, the grain boundary 

width δ, the Boltzman factor kBZT and the interface specific Gibbs free energy γ  (see 

also Evans et al., 2001). 

Similar to the pre-exponential constant of eqs. 1 and 1.1, eq. 6 could additionally be used 

to obtain information about mass transfer in case of two-phase systems (e.g. calcite – 

muscovite). Here, the constants k’ and c’ also comprise information with respect to mass 

transfer coefficients. In comparison with eq. 1.1, the parameters C’, Ω, δ, kBZ and γ  will 

be nearly constant for both k’ and c’, i.e. for calcite and the second phases, respectively. 

The only parameter variable for different geologic environments will be the mass transfer 

coefficient. In this way, mass transfer coefficients for second-phase minerals can be 

investigated for polymineralic aggregates undergoing coarsening via dissolution - mass 

transfer - precipitation cycles. Since, mass transfer is drastically enhanced under wet 

conditions, the mass transfer coefficient may deliver additional information about the 

fluid activity in such systems. This information is crucial for comparison of identical 

polymineralic rock types from different geological environments to learn more in a 

quantitative way about the processes associated with the microstructural evolution.  
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