

GSA Data Repository material: Sinha et al., Variability of Southwest Indian Summer Monsoon precipitation during the Bølling-Ållerød

Figure DR1. Correlation of mean monthly monsoon rainfall (1901 A.D. to 1990 A.D.) near Timta Cave (Mukteshwar meteorological station, 29.28°N; 79.39°W, elevation 2000 m) to area weighted monsoon rainfall in Central Northeast India (Indian Meteorology Department). Monsoon rainfall in Central Northeast India indicative of overall strength of Bay of Bengal monsoon branch. During stronger (weaker) monsoons, the intensified (weakened) depressions from the Bay of Bengal bring greater (lesser) fraction of moisture to this region resulting in higher (lower) than average precipitation.

Figure DR2. (A) Tuning of stalagmite T1 δ^{18} O record to GISP2 accumulation rate record (Alley et al., 1993). Black lines indicate correlative events. (B) Power spectrum of stalagmite T1 δ^{18} O record (Ghil et al., 2002) computed using the multi-taper method (time bandwidth product of 3, 5 tapers, and robust red noise estimation to the logarithm of the spectrum). Record was detrended prior to analysis by removing 1st reconstructed component determined by singular spectrum analysis. Chisquared confidence intervals of 99% (dashed) and 95% (solid) of the power spectrum estimates. Spectral peaks significant above the 95% level are labeled with their period (yr). (C) Comparison of detrended stalagmite T1 d18O record with the reconstructed components (Ghil et al., 2002) of 124 and 60 yr periods.

Figure DR3: All India monsoon rainfall (top) (Sontakke et al., 1993) wavelet power spectrum (bottom left) (Torrence and Compo, 1998). The contour levels are chosen so that 75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively. The cross-hatched region is the cone of influence, where zero padding has reduced the variance. Black contour is the 90% confidence interval, using a red-noise (autoregressive lag1) background spectrum. The global wavelet power spectrum is shown on the right (black line). The dashed line is the 90% confidence interval.

Table DR1. ²³⁰Th dating of stalagmite T1 from Timta Cave by magnetic sector inductively coupled plasma mass spectrometry. Errors are 2σ . Decay constant values are $\lambda_{230} = 9.1577$ x 10^{-6} y⁻¹, $\lambda_{234} = 2.8263$ x 10^{-6} y⁻¹, $\lambda_{238} = 1.55125$ x 10^{-10} y⁻¹. Corrected ²³⁰Th ages assume the initial 230 Th/ 232 Th atomic ratio of 3.0 ±1.5 x 10⁻⁶. This correction is different from the standard value of 4.4 ppm. This value was determined by the measurements of 2 or 3-point isochrons (T1-6, T1-7 and T1-8) and it was constrained well by those samples from the same layer (same age) with different measured ²³⁰Th/²³²Th values. The arbitrarily assumed error (50%) covers all possible ranges of the initial ²³⁰Th/²³²Th values constrained by the three isochrons. The chemical separation procedures at the University of Minnesota Isotope Laboratory are similar to those described by Edwards et al. (1987). The bias corrections and half-lives of ²³⁰Th and ²³⁴U followed Cheng et al. (2000). Thorium and uranium isotopes were analyzed separately on a Finnigan-MAT Element outfitted with a double focusing sector-field magnet in reversed Nier-Johnson geometry and a single MasCom multiplier. The instrument was operated in low resolution and in electrostatic peak hopping mode. Combined ionization plus transmission efficiency of 2.5 to 3% has been measured for uranium and 1.5 to 2‰ has been measured for thorium. Further details of instrumental procedures are explained by Shen et al. (2002). Depths are relative to the top (youngest surface) of the stalagmite. Ages are relative to 1950 AD.

Sample	Distance	²³⁸ U	²³² Th	²³⁰ Th/ ²³² Th	δ ²³⁴ U*	²³⁰ Th/ ²³⁸ U	²³⁰ Th Age (yr)	²³⁰ Th Age (yr)	$\delta^{234}U_{Initial}$ **
Number	(cm)	(ppb)	(ppt)	(atomic x 10 ⁻⁶)	(measured)	(activity)	(uncorrected)	(corrected)	(corrected)
T1-1a	0.113	176.1 ±0.3	2135 ±20	158 ±3	109.2. ±2.6	0.1159 ±0.0016	12030 ±170	11820 ±210	112.9 ±2.7
T1-1b	0.113	222.2 ±0.5	5060 ±30	84 ±1	108.4 ±2.7	0.1161 ±0.0017	12070 ±170	11660 ±270	112.0 ±2.8
T1-178-180	0.113	216.7 ±0.5	13200 ±38	33.3 ±0.3	110.5 ±2.1	0.1230 ±0.0011	12800 ±125	11710 ±560	114.2 ±2.1
T1-2a	1.800	243.6 ±0.5	5580 ±34	91 ±1	107.7 ±3.0	0.1256 ±0.0018	13120 ±200	12710 ±290	111.6 ±3.2
T1-2b	1.800	255.1 ±0.5	5010 ±32	105 ±1	105.4 ±2.9	0.1251 ±0.0015	13090 ±170	12740 ±250	109.3 ±3.0
T1-221-223	1.813	187.2 ±0.3	3210 ±13	124 ±1	109.1 ±1.8	0.1290 ±0.0010	13475 ±120	13140 ±210	113.2 ±1.9
T1-3	2.200	134.0 ±0.3	1425 ±22	194 ±4	100.3 ±3.4	0.1251 ±0.0020	13160 ±220	12960 ±240	104.1 ±3.5
T1-4	2.800	179.7 ±0.4	1264 ±21	292 ±6	105.2 ±3.2	0.1244 ±0.0018	13020 ±200	12900 ±210	109.1 ±3.3
T1-247-249	2.913	202.3 ±0.3	1318 ±11	315 ±3	105.7 ±1.8	0.1243 ±0.0009	13000 ±105	12880 ±130	109.6 ±1.9
T1-289-291	4.613	182.8 ±0.3	1832 ±11	206 ±2	102.2 ±1.9	0.1250 ±0.0009	13120 ±102	12940 ±140	106.0 ±1.9
T1-5	6.113	216.8 ±0.5	2006 ±20	225 ±3	101.5 ±2.8	0.1259 ±0.0015	13230 ±170	13060 ±190	105.3 ±2.9
T1-346-350	7.013	217.1 ±0.3	6155 ±17	74.8 ±0.5	102.3 ±1.5	0.1284 ±0.0008	13500 ±100	12990 ±270	106.1 ±1.6
T1-401-405	9.213	187.3 ±0.3	3969 ±11	100.4 ±0.7	104.5 ±1.5	0.1289 ±0.0008	13520 ±90	13140 ±210	108.4 ±1.6
T1-6a	9.713	214.7 ±0.5	5990 ±36	77 ±1	103.2 ±2.9	0.1293 ±0.0021	13580 ±240	13080 ±340	107.0 ±3.8
T1-6b	9.913	213.6 ±0.5	9162 ±53	51 ±1	101.4 ±3.5	0.1322 ±0.0023	13930 ±260	13160 ±460	105.3 ±3.7
T1-7a	10.413	219.8 ±0.5	11070 ±53	44 ±1	102.8 ±3.6	0.1340 ±0.0022	14110 ±250	13210 ±520	106.7 ±3.8
T1-7b	10.413	226.2 ±0.6	16160 ±62	32 ±1	108.7 ±3.6	0.1389 ±0.0021	14590 ±240	13300 ±680	112.9 ±3.8
T1-7c	10.413	238.0 ±0.6	11670 ±50	45 ±1	104.1 ±3.2	0.1340 ±0.0019	14100 ±210	13220 ±490	108.0 ±3.3
T1-8a	10.813	206.0 ±0.4	11380 ±50	41 ±1	104.4 ±2.9	0.1376 ±0.0020	14500 ±230	13500 ±550	108.4 ±3.0
T1-8b	10.813	244.2 ±0.5	5620 ±32	94 ±1	100.6 ±2.9	0.1309 ±0.0016	13800 ±200	13390 ±290	104.5 ±3.0
T1-9a	11.813	260.4 ±0.6	4330 ±24	138 ±2	111.0 ±2.7	0.1385 ±0.0016	14510 ±180	14220 ±230	115.6 ±2.8
T1-9b	11.813	245.6 ±0.5	9990 ±42	59 ±1	113.4 ±2.7	0.1460 ±0.0017	15310 ±200	14580 ±410	118.2 ±2.8

References:

- Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., Ram, M., Waddington, E.D., Maylewski, P.A., and Zielinski, G.A., 1993, Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event: Nature, v. 362, p. 527-529.
- Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmerom, Y., 2000, The half-lives of uranium-234 and thorium-230: Chemical Geology, v. 169, p. 17-33.
- Edwards, R.L., Chen, J.H. and Wasserburg, G.J., 1987, U-238, U-234, Th-230, Th-232 systematics and the precise measurement of time over the past 500,000 years: Earth and Planetary Science Letters, v. 81, p. 175-192.
- Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., and Yiou, P., 2002, Advanced spectral methods for climatic time series: Reviews of Geophysics, v. 40, doi: 10.1029/2001RG000092.
- Shen, C.-C., Edwards, R.L., Cheng, H., Dorale, J.A., Thomas, R.B., Moran, S.B., Weinstein, S., and Edmonds, H.N., 2002, Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry: Chemical Geology, v. 185, p. 165-178.
- Sontakke, N.A., Pant, G.B., and Singh, N., 1993, Construction of all-India summer monsoon rainfall series for the period 1844-1991: Journal of Climate, v. 6, p. 1807-1811.
- Torrence, C. and Compo, G.P., 1998, A practical guide to wavelet analysis: Bulletin of the American Meteorological Society, v. 79, p. 61-78.