Data repository 2009023 for:

Geologic and Taphonomic Context of El Bosque Petrificado Piedra Chamana (Cajamarca, Peru)

We dated three feldspar separates from two samples from El Bosque Petrificado Piedra Chamana using 40 Ar/ 39 Ar methods. Single crystal laser-fusion analyses were performed at the New Mexico Geochronology Laboratory using a MAP 215-50 mass spectrometer on line with an all-metal automated CO₂ laser extraction line. Results are summarized in Table 1 and detailed in Table 2 and Figure 1. Table 2 footnotes include details of the instrumentation and analytical parameters.

Sanidine from sample SX-050, a welded ignimbrite underlying the fossiliferous deposit, provided the highest quality age determination. Twenty-eight single crystals yielded ages ranging from 38.76 ± 0.09 Ma to 39.89 ± 0.08 Ma. A probability plot of these data (Fig. 1a, Table 2) suggests a unimodal Gaussian distribution, although the scatter in the data (MSWD = 10.9) is somewhat higher that would be expected from analytical uncertainty alone. Excluding results from the youngest crystal, the weighted mean age of twenty-seven crystals is 39.52 ± 0.11 Ma (2 sigma error). We interpret this as an accurate determination of the eruption age of the ignimbrite.

Plagioclase grains from SX-050 and SX-010 were too small for precise singlecrystal analyses. Aliquots of 10 to 30 crystals were analyzed by two-step laserincremental heating. The initial laser-heating step for each analysis was used to remove atmospheric argon. Data from these initial steps have very low precision and are not included in Table 2 or Figure 1.

The four aliquots of crystals plagioclase from the SX-050 yielded a weighted mean age of 39.17 ± 0.21 Ma (Fig. 2b, Table 2), which is analytically indistinguishable from the sanidine result described above.

Dating of plagioclase from sample SX-010 of the fossil-bearing ash-fall deposit was complicated by pervasive clay-alteration of the crystals. No sanidine was found in this unit. Data from five aliquots of plagioclase crystals produced reasonably precise ages (Table 2), which are bimodally distributed (Fig. 2c, Table 2). The ages of three aliquots overlap and yield a weighted mean age of 39.35 ± 0.21 Ma, which we interpret as the eruption age of this unit. The apparent ages of the other two aliquots are younger, near 38.2 Ma. We interpret these anomalously young ages as being due to alteration. Analysis of additional crystals might facilitate more confident interpretation of this apparent bimodal age distribution.

Table 1. Summary of ⁴⁰Ar/³⁹Ar results from Sexi, Peru samples.

						Mean Age				
Sample	Unit	Location	L#	Irrad	min	analysis	n	MSWD	K/Ca ± 2s	Age(Ma) ± 2s
SX-050	welded ignimbrite	S6 31.834 W79 02.874	56307	NM-196M S	Sanidine	Mean	27	10.9	58.7 ± 45.1	39.52 ± 0.11
SX-050	welded ignimbrite	S6 31.834 W79 02.874	56311	NM-196N F	Plagioclase	Mean	4	2.6	0.6 ± 0.1	39.17 ± 0.21
SX-010	white ash above paleosol	S6 34.188 W79 02.048	56310	NM-196N F	Plagioclase	Mean	3	0.4	0.2 ± 0.0	39.35 ± 0.21

	ID	40Ar/39A	r ³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	Age	±1σ
				(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(Ma)	(Ma)
			0 0000400 0 050	%, D=1.002±0.001,					
,	06	24.25	0.0009108±0.059	%, D=1.002±0.001, 1.385	4.412	28.6	98.3	38.764	0.089
`	00	24.25	0.0057	0.9105	5.727	89.2	98.9	39.005	0.075
	04	24.27	0.0092	0.8310	3.307	55.7	99.0	39.032	0.075
	27	24.18	0.0032	0.2959	6.365	18.6	99.6	39.162	0.068
	10	24.10	0.0275	0.5668	5.422	37.6	99.3	39.208	0.067
	13	24.31	0.0057	0.5477	2.217	89.7	99.3	39.24	0.10
	20	24.27	0.0324	0.3378	5.182	15.7	99.6	39.287	0.084
	20 16	24.34	0.0324	0.5595	3.550	45.2	99.3	39.295	0.089
	10	24.41	0.0055	0.6774	5.954	92.0	99.2	39.348	0.073
	17	24.33	0.0000	0.3533	3.987	75.9	99.6	39.378	0.078
	24	24.38	0.0067	0.4547	2.258	76.4	99.5	39.41	0.000
	24 15	24.50	0.0007	0.7904	7.942	41.7	99.1	39.454	0.068
	23	24.51	0.0122	0.7904	8.156	39.4	99.1 99.3	39.464 39.464	0.067
	23 09	24.44	0.0129	2.327	4.099	78.9	99.3 97.3	39.546	0.080
	12	23.02 24.47	0.0085	0.4781	4.099 5.912	59.9	97.3 99.4	39.540 39.547	0.080
	07	24.47	0.0085	0.7070	5.442	66.8	99.4 99.2	39.561	0.083
	07	24.53	0.0076	0.5101	2.150	78.5	99.2 99.4	39.61	0.083
	03	24.55	0.0005	0.2647	7.354	12.5	99.4 99.7	39.649	0.12
	18	24.47	0.0410	0.2047	4.565	47.9	99.7 99.8	39.651	0.000
	10	24.40	0.0082	0.2003	4.082	62.2	99.8 99.7	39.681	0.070
	21	24.49	0.0082	0.2300	4.082	29.2	99.7 99.9	39.721	0.080
	14	24.47	0.0089	0.1404	3.762	57.2	99.9 99.8	39.721	0.088
	02	24.40	0.0089	0.1738	2.279	69.7	99.8 99.8	39.721	0.070
	28	24.50 24.58	0.0073	0.1738	7.319	75.9	99.8 99.5	39.74 39.766	0.10
	26 26	24.50	0.0068	0.2138	6.876	74.7	99.5 99.7	39.830	0.062
	20 25	24.63	0.0086	0.3939	4.980	59.6	99.5	39.841	0.079
	03	24.65	0.0072	0.3857	5.031	71.0	99.5	39.870	0.073
	22	24.05	0.0072	1.372	3.369	64.8	99.5 98.4	39.889	0.081
					5.509		90.4		
	mean a	age ± 2 ơ	n=27	MSWD=10.92		58.7 ±45.1		39.52	0.11
SX-050, Plagioclase, J=0.000918±0.11%, D=1.002±0.001, NM-196N, Lab#=56311									
	03B	24.92	1.035	4.311	1.834	0.49	95.2	38.90	0.13
	04B	24.52	0.9491	2.353	2.180	0.54	97.5	39.19	0.11
	02B	24.43	0.9718	1.988	2.753	0.52	97.9	39.209	0.099
	05B	24.98	0.7859	3.333	1.468	0.65	96.3	39.43	0.15
¢	01B	25.77	1.047	4.931	2.610	0.49	94.7	39.99	0.11
		age ± 2 o		MSWD=2.58		0.55 ±0.14		39.17	0.21
	OV 6 4 4								
,				11%, D=1.002±0.00		[⊭] =56310 0.18	09 4	20 10	0 1 2
	03B 01B	23.63	2.764	2.035	2.123		98.4 90.6	38.12	0.12
(25.79	3.059	9.047	1.935	0.17		38.31	0.15
	02B	24.20	2.763	1.512	1.668	0.18	99.1	39.29	0.14
	05B	24.28	3.318	1.900	1.275	0.15	98.8 07.4	39.34	0.18
	04B	24.76	3.152	3.093	0.841	0.16	97.4	39.52	0.21
	Mean a	age ± 2 o	n=3	MSWD=0.38		0.17 ±0.03		39.35	0.21

Table 2. ⁴⁰Ar/³⁹Ar analytical data.

Notes:

Age calculations:

x symbol preceding sample ID denotes analyses excluded from mean age calculations.

Ages calculated relative to FC-2 Fish Canyon Tuff sanidine interlaboratory standard (28.02 Ma, Renne et al, 1998). Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions. Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties. Mean age is weighted mean age of Taylor (1982). Mean age error is weighted error

of the mean (Taylor, 1982), multiplied by the root of the MSWD where MSWD>1, and also

incorporates uncertainty in J factors and irradiation correction uncertainties.

Decay constants and isotopic abundances after Steiger and Jäger (1977).

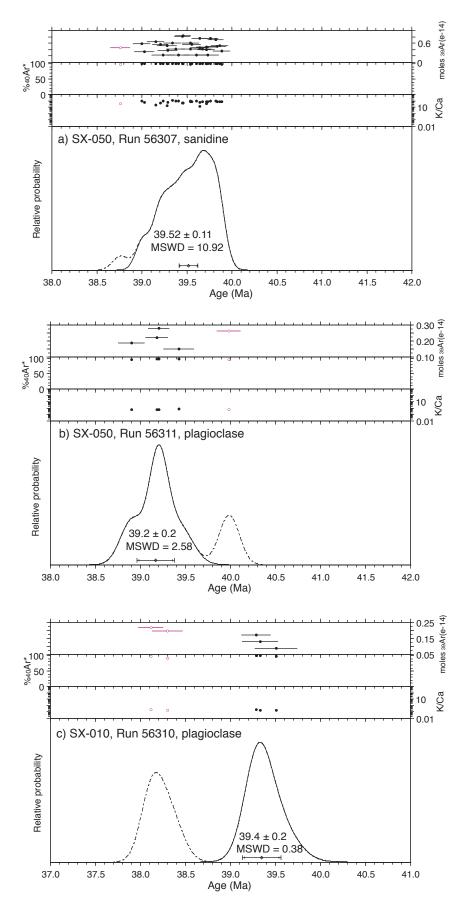
All weighted-mean age errors reported at $\pm 2\sigma$.

Sample preparation and irradiation:

Feldspar separates prepared using crushing, dilute HCI acid treatment, Franz magnetic separator, and hand-picking techniques.

Samples were loaded into machined Al discs and irradiated in one batch (NM-196) for 9 hours in the D-3 position, Nuclear Science Center, College Station, TX.

Neutron flux monitor Fish Canyon Tuff sanidine (FC-1).


Instrumentation:

Mass Analyzer Products 215-50 mass spectrometer on line with automated all-metal extraction system. Samples were fused or heated in two steps usung a Synra]d 50 watt CO2 laser (heating duration 30 seconds). Reactive gases removed during furnace analysis by reaction with 2 SAES GP-50 getters, 1 operated at ~450°C and 1 at 20°C. Gas also exposed to a W filament operated at ~2000°C.

Analytical parameters:

Electron multiplier sensitivity averaged 4.7 x 10-17 moles/pA for the furnace extraction system. Total system blank and background for the furnace averaged 224,3.7,1.5,2.9,6.3 x 10^{-18} moles. J-factors determined to a precision of ± 0.1% by CO₂ laser-fusion of 6 single crystals from each of 6 radial positions around the irradiation tray. Correction factors for interfering nuclear reactions were determined using K-glass and CaF₂ and are as follows:

Correction factors for interfering nuclear reactions were determined using K-glass and CaF₂ and are as follows: $({}^{39}Ar)_{Ca} = 0.000676 \pm 4e-06$

Appendix Figure 1. Probability distribution plots (Deino and Potts, 1992) for 40Ar/39Ar laser-fusion anlyses of El Bosque Petrificiado Piedra Chamana samples. a) sanidine from welded ignimbrite, b) plagioclase from welded ignimbrite, c) plagioclase from white ash above paleosol.

References for Data Repository

- Deino, A. and Potts, R., 1992. Age-probability spectra for examination of single-crystal ⁴⁰Ar/³⁹Ar dating results: examples from Olorgesailie, Southern Kenya Rift. Quaternary International, v. 13/14, 47-53
- Renne, P. R., C. C. Swisher, A. L. Deino, D. B. Karner, T. L. Owens, and D. J. Depaolo, 1998a, Intercalibration Of Standards: Absolute Ages and Uncertainties In ⁴⁰Ar/³⁹Ar Dating: Chemical Geology, v. 145, p. 117-152.
- Steiger, R.H., and Jaeger, E., 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planet. Sci. Lett., 36, 359-362.
- Taylor, J.R., 1982. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, Univ. Sci. Books, Mill Valley, Calif., 270 p.