## Data Repository of Zhang et al.

## Data Repository Appendix A: Description of the geochronological samples

Sample D169-2 is a foliated quartz diorite collected from the central-western part of the Daguangding pluton (Fig. 1), which consists of plagioclase (70 vol.%), quartz (15 vol.%), biotite (8 vol.%), hornblende (5 vol.%), K-feldspar (1 vol.%) and accessory magnetite, titanite, apatite and zircon and secondary (<1 vol.%) sericite and epidote. Zircons from this sample display typical features of magmatic zircons and are transparent, pink, long euhedral prisms with well-developed oscillatory zoning in CL images (Fig. DR2a), with grain size ranging from 100 to 200 µm. Some zircons have rounded relict cores.

Sample HFH-1 was collected from a granite dyke intruded into the Archean gneiss two km south to the Hushiha pluton. It is comprised of plagioclase (45 vol.%), K-feldspar (25 vol.%), quartz (21 vol.%) and biotite (5 vol.%), with accessory magnetite, apatite and zircon and secondary muscovite (3 vol.%, altered after biotite), sericite and chlorite. The zircons are pink, euhedral short or long prisms with well-developed oscillatory zoning in CL images and some of them have rounded relict cores (Fig. DR2b). Zircon grain size ranges from 60 to 250 µm.

Sample HFG-2 is a mylonitic monzogranite collected from the central-southern part of the Guanglingshan pluton (Fig. 1). Its mineral assemblage comprises K-feldspar (42 vol.%), plagioclase (35 vol.%), quartz (20 vol.%), biotite (2 vol.%), with accessory magnetite, apatite and zircon and secondary (<1 vol.%) chlorite and sericite. Zircons from the granite are euhedral long or short yellowish prisms with oscillatory zoning in CL images (Fig. DR2c). The grain sizes are from 100 µm to 200 µm.

Sample D315 is a weakly foliated granodiorite collected from the eastern part of the Jianping diorite pluton (Fig. 1). It is comprised of plagioclase (52 vol.%), quartz (20 vol.%), biotite (11 vol.%), K-feldspar (10 vol.%) and hornblende (6 vol.%), with accessory magnetite, titanite, apatite and zircon and secondary sericite (<1 vol.%). The zircons are transparent, yellowish euhedral prisms with well-developed oscillatory zoning in CL images (Fig. DR2d). Zircon grain size ranges from 50 µm to 200 µm.

Sample D315-1 was collected from a syenogranite dyke intruded into the Jianping diorite pluton. It consists of K-feldspar (50 vol.%), plagioclase (25 vol.%), quartz (22 vol.%) and biotite (2 vol.%), with accessory magnetite, allanite, apatite and zircon and secondary (<1 vol.%) sericite and chlorite. The zircons are euhedral yellowish prisms with well-developed oscillatory zoning in CL images (Fig. DR2e). Zircon grain size ranges from 100 µm to 300 µm.

Sample D315-3 is a monzogranite collected from the Jianping granite pluton (Fig. 1). It comprises K-feldspar (45 vol.%), plagioclase (28 vol.%), quartz (22 vol.%), biotite (4 vol.%) and hornblende (<1 vol.%), with accessory magnetite, titanite, apatite and zircon and secondary (<1 vol.%) sericite and chlorite. The zircons are euhedral yellowish long or short prisms that are 100  $\mu$ m to 250  $\mu$ m long. Oscillatory zoning is well developed in CL images (Fig. DR2f).

| Sample no.   | Longitude        | Latitude  | Rock type           | Main mineral assemble     | Subordinate minerals     | Secondary minerals          |
|--------------|------------------|-----------|---------------------|---------------------------|--------------------------|-----------------------------|
| Longhua plı  | uton (LH)        |           |                     |                           |                          |                             |
| SD020-3      | 117°46'40"       | 41°20'00" | quartz diorite      | Pl + Qtz + Bt + Hbl + Kfs | Mt + Zr + Ap + Ttn + Aln | Chl + Epi + Ser             |
| SD020-1      | 117°47'17"       | 41°19′40″ | quartz diorite      | Pl + Qtz + Hbl + Bt + Kfs | Mt + Zr + Ap + Ttn       | Chl + Epi + Cal + Ser       |
| Daguangdin   | g pluton (DGD    |           |                     |                           |                          |                             |
| D018-1       | 117°38'06"       | 41°16'10" | quartz diorite      | Pl + Qtz + Hbl + Bt + Kfs | Mt + Zr + Ap + Ttn + Aln | Chl + Epi + Zoi + Ser       |
| D018-3       | 117°38'06"       | 41°16′10″ | quartz diorite      | Pl + Qtz + Bt + Hbl       | Mt + Zr + Ap + Ttn + Aln | Chl + Epi + Zoi + Ser + Kfs |
| D018-5       | 117°38'07"       | 41°16′09″ | quartz diorite      | Pl + Qtz + Bt + Hbl       | Mt + Zr + Ap + Ttn + Aln | Chl + Epi + Zoi + Ser + Kfs |
| D169-2       | 117°26'49"       | 41°14′14″ | quartz diorite      | Pl + Qtz + Bt + Hbl + Kfs | Mt + Zr + Ap + Ttn       | Epi + Ser                   |
| D224-1       | 117°34'23"       | 41°12'42" | quartz monzodiorite | Pl+Hbl+Qtz+Kfs+Bt         | Mt + Zr + Ap + Ttn       | Ser                         |
| D239-1       | 117°20'36"       | 41°11'09" | quartz diorite      | PI + HbI + Qtz + Bt       | Mt + Zr + Ap + Ttn       | Chl + Epi + Ser             |
| D195-1       | 117°30'26"       | 41°09′40″ | hornblende gabbro   | PI + HbI + Bt + Cpx       | Mt + Zr + Ap + Ttn       | Epi + Ser                   |
| Boluonuo pi  | luton (BLN)      |           |                     |                           |                          |                             |
| HLB-G        | 117°20'25"       | 41°03'54" | quartz diorite      | Pl+Bt+Qtz+Hbl+Kfs         | Mt + Zr + Ap             | Chl + Epi + Ser             |
| D107-1       | 117°22'32"       | 41°05'51" | quartz diorite      | PI + Qtz + HbI + Bt       | Mt + Zr + Ap             | Chl + Epi + Zoi + Ser       |
| D203-1       | 117°24'44"       | 41°05′56″ | diorite             | Pl + Hbl + Bt + Qtz       | Mt + Zr + Ap + Ttn       | Chl + Epi + Ser             |
| Hushiha plu  | ton (HSH)        |           |                     |                           |                          |                             |
| FP2          | 116°59'01"       | 40°59'17" | granodiorite        | Pl + Qtz + Kfs + Bt       | Mt + Zr + Ap             | Cal + Mus + Ser             |
| FP3          | 116°59'02"       | 40°59'16" | granodiorite        | PI + Qtz + Kfs + Bt       | Mt + Zr + Ap             | Cal + Mus + Ser + Lm        |
| HFH-1        | 116°59′30″       | 40°58'10" | granite dyke        | Pl+Kfs+Qtz+Bt             | Mt + Zr + Ap             | Chl + Mus + Ser             |
| Jianping dio | rite pluton (JP) | _         |                     |                           |                          |                             |
| D315         | 119°37'48"       | 41°52'57" | granodiorite        | Pl + Qtz + Bt + Kfs + Hbl | Mt + Zr + Ap + Ttn       | Ser                         |
| D316         | 119°37'55"       | 41°53'08" | granodiorite        | Pl + Qtz + Bt + Kfs + Hbl | Mt + Zr + Ap + Ttn       | Chl + Epi                   |
| D322-1       | 119°34'22"       | 41°51'32" | quartz diorite      | PI + Qtz + HbI + Kfs + Bt | Mt + Zr + Ap + Ttn       | Ser                         |

Table DR1 Summary of the samples from the Late Paleozoic-Early Mesozoic intrusions

DR2008141

 $\mathfrak{c}$ 

| Table DR1   | continued)        |                |                                |                                 |                            |                                       |
|-------------|-------------------|----------------|--------------------------------|---------------------------------|----------------------------|---------------------------------------|
| Sample no.  | Longitude         | Latitude       | Rock type                      | Main mineral assemble           | Subordinate minerals       | Secondary minerals                    |
| Jianping gr | anite pluton (JP  | (              |                                |                                 |                            |                                       |
| D315-1      | 119°37'48"        | 41°52'57"      | syenogranite dyke              | Kfs + Pl + Qtz + Bt             | Mt + Zr + Ap + Aln         | Chl + Ser                             |
| D315-3      | 119°37'50"        | 41°52'57"      | monzogranite                   | Kfs + Pl + Qtz + Bt + Hbl       | Mt + Zr + Ap + Ttn         | Chl + Ser                             |
| D386-1      | 119°33'58"        | 41°56'47"      | monzogranite                   | Kfs + Pl + Qtz + Bt             | Mt + Zr + Ap               | Chl + Ser                             |
| D374        | 119°35'08"        | 41°56'30"      | monzogranite                   | Kfs + Pl + Qtz + Bt + Hbl       | Mt + Zr + Ap + Ttn         | Chl + Ser                             |
| D319        | 119°37'23"        | 41°52'46"      | monzogranite                   | Kfs + Pl + Qtz + Bt             | Mt + Zr + Ap + Ttn         | Chl + Epi + Ser                       |
| D327        | 119°53'56"        | 41°54'29"      | monzogranite                   | Kfs + Pl + Qtz + Bt             | Mt + Zr + Ap + Ttn         | Chl + Ser                             |
| D351        | 119°38'00″        | 41°49'22"      | quartz monzonite               | Kfs + Pl + Qtz + Bt + Hbl       | Mt + Zr + Ap + Ttn         | Chl + Epi                             |
| Guanglings  | han pluton (GL    | S)             |                                |                                 |                            |                                       |
| D120-1      | 117°15'31"        | 41°11'03"      | monzogranite                   | Kfs + Pl + Qtz + Bt             | Mt + Zr + Ap               | Chl + Ser                             |
| D126-1      | 117°15′59″        | 41°10′38″      | mylonitic monzogranite         | Kfs + Pl + Qtz + Bt             | Mt + Zr + Ap               | Chl + Ser                             |
| D138-1      | 117°19'45"        | 41°09′47″      | mylonitic monzogranite         | Kfs + Qtz + Pl + Bt             | Mt + Zr + Ap               | Chl + Ser + Lm                        |
| D148-1      | 117°18'26"        | 41°10'15"      | mylonitic syenogranite         | Kfs + Pl + Qtz + Bt             | Mt + Zr + Ap + Aln         | Chl + Lm                              |
| HFG-G       | 117°15'54"        | 41°10′22″      | mylonitic monzogranite         | Kfs + Pl + Qtz + Bt             | Mt + Zr + Ap               | Chl + Ser                             |
| HFG-2       | 117°16'00"        | 41°10'28"      | mylonitic monzogranite         | Kfs + Pl + Qtz + Bt             | Mt + Zr + Ap               | Chl + Ser                             |
| Mineral abb | reviations: Pl, p | lagioclase; Bt | t, biotite; Hbl, hornblende; K | fs, K-feldspar; Qtz, quartz; Cp | x, clinopyroxene; Mus, mus | covite; Ttn, titanite; Mt, magnetite; |

Ap, apatite; Zr, zircon; Aln, Allanite; Chl, chlorite; Epi, epidote; Zoi, zoisite; Cal, calcite; Ser, sericite; Lm, limonite. Order of minerals in main mineral assemblage is

according to their abundance.

| Elements | GSR-1 <sup>a</sup> | Variation (%) | GSR-1 <sup>b</sup> | Variation (%) | GSR-1*          |
|----------|--------------------|---------------|--------------------|---------------|-----------------|
| Li       | 129.31             | -1.29         | -                  | -             | 131±3           |
| Be       | 11.83              | -4.60         | -                  | -             | 12.4±0.7        |
| Sc       | 5.97               | -2.13         | 6.40               | 4.92          | 6.1±0.6         |
| Ti       | 1715.35            | -0.27         | -                  | -             | 1720±30         |
| V        | 23.16              | -3.50         | -                  | -             | 24±1            |
| Cr       | 4.68               | 30.00         | 3.97               | 10.28         | 3.6±1.1         |
| Co       | 3.28               | -3.53         | 3.00               | -11.76        | 3.4±1.0         |
| Cu       | 1.85               | -42.19        | 3.34               | 4.37          | 3.2±1.3         |
| Zn       | 26.41              | -5.68         | 27.42              | -2.07         | 28±4            |
| Ga       | 18.43              | -3.00         | 19.48              | 2.53          | 19±2            |
| Rb       | 452.08             | -2.99         | 450.38             | -3.35         | 466±26          |
| Sr       | 105.59             | -0.39         | 111.02             | 4.74          | 106±9           |
| Y        | 62.01              | 0.02          | 64.09              | 3.37          | 62±7            |
| Zr       | 172.44             | 3.26          | 168.36             | 0.81          | 167±14          |
| Nb       | 39.73              | -0.68         | 44.56              | 11.40         | 40±4            |
| Sn       | 12.55              | 0.40          | 12.34              | -1.28         | 12.5±2.0        |
| Cs       | 38.84              | 1.15          | 37.28              | -2.92         | 38.4±1.5        |
| Ba       | 333.02             | -2.91         | 343.75             | 0.22          | 343±45          |
| La       | 54.15              | 0.28          | 57.31              | 6.13          | 54±5            |
| Ce       | 111.66             | 3.39          | 113.60             | 5.19          | $108\pm11$      |
| Pr       | 12.62              | -0.63         | 12.16              | -4.25         | $12.7 \pm 0.8$  |
| Nd       | 48.58              | 3.36          | 47.19              | 0.40          | $47\pm5$        |
| Sm       | 9.54               | -1.65         | 10.45              | 7.73          | $9.7 \pm 1.2$   |
| Eu       | 0.83               | -2.35         | 0.91               | 7.06          | $0.85 \pm 0.10$ |
| Gd       | 9.58               | 3.01          | 9.23               | -0.75         | $9.3 \pm 0.8$   |
| Tb       | 1.65               | 0.00          | 1.60               | -3.03         | $1.65 \pm 0.13$ |
| Dy       | 10.62              | 4.12          | 9.46               | -7.25         | $10.2 \pm 0.5$  |
| Но       | 2.03               | -0.98         | 1.92               | -6.34         | $2.05 \pm 0.22$ |
| Er       | 6.33               | -2.62         | 6.24               | -4.00         | $6.5 \pm 0.4$   |
| Tm       | 1.10               | 3.77          | 1.00               | -5.66         | $1.06 \pm 0.11$ |
| Yb       | 7.60               | 2.70          | 7.42               | 0.27          | $7.4 \pm 0.7$   |
| Lu       | 1.16               | 0.87          | 1.15               | 0.00          | $1.15 \pm 0.12$ |
| Hf       | 6.53               | 3.65          | 5.71               | -9.37         | 6.3±0.8         |
| Та       | 6.82               | -5.28         | 6.94               | -3.61         | 7.2±0.7         |
| Pb       | 31.27              | 0.87          | 29.38              | -5.23         | 31±4            |
| Bi       | -                  | -             | 0.62               | 16.98         | 0.53±0.09       |
| Th       | 54.84              | 1.56          | 55.11              | 2.06          | 54±4            |
| U        | 18.50              | -1.60         | 17.98              | -4.36         | 18.8±2.2        |

Table DR2 Measured and recommended trace element data (ppm) for rock standards

<sup>a</sup> Measured at the State Key Laboratory of Mineral Deposits Research, Nanjing University.

<sup>b</sup> Measured at the Institute of Geology and Geophysics, Chinese Academy of Sciences.

\* Recommended values of the Chinese standard GSR-1 are from Xie et al (1989).

|              | 20655                      |         | Th    |      | <sup>206</sup> Pb* | 204 /206 | *                   |                    |                       | $^{206}\mathrm{Pb}^{*/238}\mathrm{U}$ | <sup>207</sup> Pb*/ <sup>206</sup> Pb* |
|--------------|----------------------------|---------|-------|------|--------------------|----------|---------------------|--------------------|-----------------------|---------------------------------------|----------------------------------------|
| jrain area   | $^{2}$ Pb <sub>c</sub> (%) | U (ppm) | (mdd) | U/U  | (mdd)              | 9,d      | 94~~~/ 94~~~        | 0 <u>~~</u> 94 ~~  |                       | Age (Ma)                              | Age (Ma)                               |
| -2 from Dag  | guangding                  |         |       |      |                    |          |                     |                    |                       |                                       |                                        |
| r            | 0.62                       | 316     | 216   | 0.71 | 12.2               | 0.00034  | $0.0464 \pm 0.0019$ | $0.286 \pm 0.012$  | $0.04474\pm0.00054$   | 282±3                                 |                                        |
| г            | 2.66                       | 93      | 6     | 0.10 | 3.78               | 0.00146  | $0.0438\pm0.0088$   | $0.277 \pm 0.058$  | $0.04596\pm0.00092$   | $290\pm 6$                            |                                        |
| L            | 1.80                       | 96      | 65    | 0.70 | 4.12               | 0.00099  | $0.0490\pm0.0069$   | $0.331 \pm 0.046$  | $0.04908\pm0.00088$   | $309\pm 6$                            |                                        |
| r            | 0.84                       | 144     | 75    | 0.53 | 6.18               | 0.00046  | $0.0557\pm0.0023$   | $0.379\pm0.017$    | $0.04938\pm0.00064$   | $311\pm4$                             |                                        |
| r            | 1.30                       | 105     | 32    | 0.31 | 4.56               | 0.00072  | $0.0572\pm0.0042$   | $0.395\pm0.030$    | $0.05006\pm0.00085$   | $315\pm 5$                            |                                        |
| J            | 0.07                       | 401     | 139   | 0.36 | 134                | 0.00005  | $0.1522\pm0.0009$   | $8.175\pm0.073$    | $0.38950\pm0.00245$   | $2,120\pm11$                          | $2,371\pm11$                           |
| r            | 0.32                       | 177     | 98    | 0.57 | 8.24               | 0.00018  | $0.0582\pm0.0024$   | $0.432\pm0.019$    | $0.05385\pm0.00070$   | $338\pm 4$                            |                                        |
| r            | 0.65                       | 192     | 98    | 0.53 | 8.78               | 0.00036  | $0.0515\pm0.0027$   | $0.376\pm0.021$    | $0.05294\pm0.00064$   | $333\pm4$                             |                                        |
| r            | 0.75                       | 153     | 110   | 0.74 | 69.9               | 0.00041  | $0.0566\pm0.0036$   | $0.393 \pm 0.026$  | $0.05042\pm0.00071$   | $317\pm 4$                            |                                        |
| ч            | 0.31                       | 155     | 60    | 0.40 | 6.51               | 0.00017  | $0.0605\pm0.0033$   | $0.406\pm0.022$    | $0.04864\pm0.00063$   | $306\pm 4$                            |                                        |
| г            | 0.57                       | 283     | 232   | 0.84 | 11.7               | 0.00031  | $0.0546\pm0.0022$   | $0.361 \pm 0.015$  | $0.04794\pm0.00047$   | $302\pm3$                             |                                        |
| r            | 0.24                       | 337     | 235   | 0.72 | 15.1               | 0.00013  | $0.0557\pm0.0019$   | $0.400\pm0.015$    | $0.05211\pm0.00073$   | 327±4                                 |                                        |
| c            | 0.03                       | 385     | 348   | 0.94 | 156                | 0.00002  | $0.1597\pm0.0014$   | $10.420\pm0.115$   | $0.47290\pm0.00293$   | $2,496\pm 13$                         | $2,453\pm 14$                          |
| r            | 1.71                       | 106     | 56    | 0.54 | 4.91               | 0.00094  | $0.0535\pm0.0064$   | $0.390 \pm 0.047$  | $0.05280\pm0.00095$   | $332\pm 6$                            |                                        |
| r            | 1.09                       | 111     | 5     | 0.05 | 4.64               | 0.00060  | $0.0538\pm0.0034$   | $0.358 \pm 0.024$  | $0.04824\pm0.00082$   | $304\pm 5$                            |                                        |
| r            | 0.47                       | 421     | 202   | 0.49 | 18.2               | 0.00026  | $0.0516\pm0.0017$   | $0.357\pm0.012$    | $0.05011\pm0.00041$   | $315\pm3$                             |                                        |
| r            | 0.88                       | 224     | 138   | 0.64 | 9.62               | 0.00048  | $0.0510\pm0.0033$   | $0.348\pm0.023$    | $0.04951\pm0.00054$   | $312\pm3$                             |                                        |
| r            | 0.60                       | 446     | 438   | 1.02 | 20.1               | 0.00033  | $0.0514\pm0.0017$   | $0.370 \pm 0.013$  | $0.05221\pm0.00043$   | $328\pm3$                             |                                        |
| r            | 0.56                       | 171     | 66    | 0.60 | 6.85               | 0.00031  | $0.0546\pm0.0037$   | $0.348\pm0.024$    | $0.04630\pm0.00060$   | $292\pm4$                             |                                        |
| r            | 1.20                       | 198     | 183   | 0.95 | 8.63               | 0.00066  | $0.0472 \pm 0.0028$ | $0.325\pm0.020$    | $0.05002\pm0.00095$   | $315\pm 6$                            |                                        |
| r            | 0.00                       | 110     | 12    | 0.11 | 4.66               | 0.00000  | $0.0618 \pm 0.0025$ | $0.421 \pm 0.019$  | $0.04940\pm0.00104$   | $311\pm 6$                            |                                        |
| H-1 from Hus | shiha                      |         |       |      |                    |          |                     |                    |                       |                                       |                                        |
| r            | 2.57                       | 196     | 188   | 0.96 | 7.85               | 0.00141  | $0.0463 \pm 0.0077$ | $0.291\pm0.049$    | $0.04550\pm0.00075$   | 287±5                                 |                                        |
| r            | 0.20                       | 125     | 43    | 0.34 | 50.6               | 0.00014  | $0.1643 \pm 0.0019$ | $10.630 \pm 0.218$ | $0.46920\pm0.00804$   | $2480 \pm 35$                         | $2501\pm19$                            |
| ပ            | 0.09                       | 566     | 213   | 0.38 | 185                | 0.00006  | $0.1493 \pm 0.0008$ | $7.844\pm0.062$    | $0.38110\pm0.00218$   | $2081{\pm}10$                         | 2338±9                                 |
| r            | 0.66                       | 345     | 92    | 0.27 | 95.7               | 0.00042  | $0.1468 \pm 0.0021$ | $6.500 \pm 0.108$  | $0.32130\pm0.00277$   | $1796\pm 13$                          | $2309\pm 24$                           |
| r            | 1.96                       | 480     | 387   | 0.81 | 20.3               | 0.00107  | $0.0527\pm0.0078$   | $0.350 \pm 0.052$  | $0.04816\pm0.00060$   | $303{\pm}4$                           |                                        |
| r            | 2.49                       | 181     | 154   | 0.85 | 7.45               | 0.00136  | $0.0567\pm0.0095$   | $0.365\pm0.049$    | $0.04672\pm0.00070$   | $294\pm4$                             |                                        |
| r            | 0.98                       | 158     | 59    | 0.37 | 6.87               | 0.00054  | $0.0723 \pm 0.0053$ | $0.500 \pm 0.037$  | $0.05018\pm0.00068$   | $316\pm4$                             |                                        |
| r            | 3.91                       | 117     | 68    | 0.58 | 4.74               | 0.00214  | $0.0580 \pm 0.0169$ | $0.360 \pm 0.107$  | $0.04550\pm0.00108$   | 287±7                                 |                                        |
| r            | 2.36                       | 132     | 110   | 0.83 | 5.55               | 0.00129  | $0.0710\pm0.0104$   | $0.470 \pm 0.069$  | $0.04787 \pm 0.00086$ | $301\pm 5$                            |                                        |
| r            | 0.23                       | 172     | 132   | 0.77 | 57.6               | 0.00015  | $0.1612 \pm 0.0020$ | $8.660\pm0.134$    | $0.38950\pm0.00348$   | $2121\pm16$                           | $2468\pm 21$                           |
| r            | 2.78                       | 248     | 241   | 0.97 | 10.9               | 0.00153  | $0.0647\pm0.0067$   | $0.444\pm0.046$    | $0.04980\pm0.00066$   | $313\pm 4$                            |                                        |

Table DR3 SHRIMP U-Pb dating results of the Late Paleozoic-Early Mesozoic intrusions

| Table DR3           | (continued)               |                                    |             |             |           |                             |                                 |                                   |                                          |                                                |                                                  |                                                    |
|---------------------|---------------------------|------------------------------------|-------------|-------------|-----------|-----------------------------|---------------------------------|-----------------------------------|------------------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------------------------------|
| Grain-spot          | Grain area                | $^{206}\mathrm{Pb}_\mathrm{c}(\%)$ | U (ppm)     | Th<br>(ppm) | Th/U      | <sup>206</sup> Pb*<br>(ppm) | $^{204}{\rm Pb}^{/206}{\rm Pb}$ | $^{207}{ m Pb}^*/^{206}{ m Pb}^*$ | $^{207}\mathrm{Pb}^{*/^{235}\mathrm{U}}$ | $^{206}{ m Pb}^{*}/^{238}{ m U}$               | <sup>206</sup> Pb*/ <sup>238</sup> U<br>Age (Ma) | <sup>207</sup> Pb*/ <sup>206</sup> Pb*<br>Age (Ma) |
| Sample HFF          | H-1 from Husl             | hiha                               |             |             |           |                             |                                 |                                   |                                          |                                                |                                                  |                                                    |
| 12.1                | r                         | 1.00                               | 353         | 293         | 0.83      | 14.9                        | 0.00055                         | $0.0583 \pm 0.0077$               | $0.392 \pm 0.025$                        | $0.04871\pm0.00091$                            | $307\pm 6$                                       |                                                    |
| 13.1                | ч                         | 2.11                               | 160         | LL          | 0.48      | 6.41                        | 0.00116                         | $0.0823\pm0.0072$                 | $0.516\pm0.047$                          | $0.04550\pm0.00118$                            | 287±7                                            |                                                    |
| 13.2                | c                         | 0.07                               | 348         | 183         | 0.53      | 133                         | 0.00005                         | $0.1677\pm0.0009$                 | $10.230\pm0.226$                         | $0.44260\pm0.00949$                            | 2362±42                                          | 2534±9                                             |
| 14.1                | r                         | 2.93                               | 103         | 70          | 0.68      | 4.10                        | 0.00160                         | $0.0810\pm0.0142$                 | $0.499\pm0.089$                          | $0.04490\pm0.00127$                            | 283±8                                            |                                                    |
| 14.2                | c                         | 0.04                               | 571         | 408         | 0.71      | 200                         | 0.00002                         | $0.1588 \pm 0.0007$               | $8.930\pm0.194$                          | $0.40810\pm0.00864$                            | $2206\pm40$                                      | 2443±8                                             |
| 15.1                | Ш                         | 0.24                               | 58          | 136         | 2.34      | 14.4                        | 0.00015                         | $0.1255\pm0.0031$                 | $4.940\pm0.176$                          | $0.28540\pm0.00723$                            | $1618\pm 36$                                     | $2036\pm 44$                                       |
| 15.2                | c                         | 0.06                               | 243         | 107         | 0.44      | 89.3                        | 0.00004                         | $0.1966\pm0.0013$                 | $11.600\pm0.270$                         | $0.42800 \pm 0.00956$                          | 2297±43                                          | $2798\pm10$                                        |
| 16.1                | r                         | 0.26                               | 1055        | 654         | 0.62      | 47.1                        | 0.00014                         | $0.0606\pm0.0016$                 | $0.433\pm0.015$                          | $0.05190\pm0.00112$                            | 326±7                                            |                                                    |
| 17.1                | r                         | 1.52                               | 89          | 30          | 0.34      | 3.78                        | 0.00083                         | $0.0696\pm0.0057$                 | $0.468 \pm 0.041$                        | $0.04880 \pm 0.00137$                          | $307\pm\!\!8$                                    |                                                    |
| 18.1                | r                         | 1.91                               | 194         | 132         | 0.68      | 7.30                        | 0.00104                         | $0.0820\pm0.0106$                 | $0.489\pm0.064$                          | $0.04300\pm0.00108$                            | 271±7                                            |                                                    |
| Sample HFC          | G-2 from Guan             | nglingshan                         |             |             |           |                             |                                 |                                   |                                          |                                                |                                                  |                                                    |
| 1.1                 | r                         | 1.39                               | 300         | 369         | 1.23      | 10.5                        | 0.00076                         | $0.0529\pm0.0042$                 | $0.292 \pm 0.024$                        | $0.04004 \pm 0.00048$                          | 253±3                                            |                                                    |
| 2.1                 | r                         | 3.62                               | 232         | 330         | 1.42      | 8.34                        | 0.00198                         | $0.0410\pm0.0107$                 | $0.225 \pm 0.059$                        | $0.04030 \pm 0.00069$                          | 255±4                                            |                                                    |
| 3.1                 | r                         | 5.06                               | 193         | 234         | 1.21      | 6.96                        | 0.00276                         | $0.0370\pm0.0185$                 | $0.201 \pm 0.101$                        | $0.03978 \pm 0.00095$                          | 251±6                                            |                                                    |
| 4.1                 | r                         | 2.86                               | 289         | 340         | 1.18      | 9.77                        | 0.00156                         | $0.0550\pm0.0132$                 | $0.288 \pm 0.069$                        | $0.03828 \pm 0.00073$                          | 242±4                                            |                                                    |
| 5.1                 | r                         | 3.21                               | 154         | 76          | 0.63      | 5.56                        | 0.00175                         | $0.0658\pm0.0079$                 | $0.370 \pm 0.044$                        | $0.04076 \pm 0.00082$                          | 258±5                                            |                                                    |
| 6.1                 | r                         | 0.89                               | 262         | 262         | 1.00      | 9.31                        | 0.00049                         | $0.0612 \pm 0.0048$               | $0.346 \pm 0.028$                        | $0.04102 \pm 0.00053$                          | 259±3                                            |                                                    |
| 7.1                 | r                         | 2.07                               | 726         | 1129        | 1.56      | 26.4                        | 0.00113                         | $0.0582 \pm 0.0042$               | $0.333 \pm 0.024$                        | $0.04153 \pm 0.00037$                          | 262±2                                            |                                                    |
| 8.1                 | r                         | 2.79                               | 284         | 310         | 1.09      | 10.00                       | 0.00152                         | $0.0530\pm0.0117$                 | $0.288 \pm 0.063$                        | $0.03981 \pm 0.00072$                          | 252±4                                            |                                                    |
| 9.1                 | r                         | 3.42                               | 293         | 195         | 0.66      | 9.95                        | 0.00187                         | $0.0527\pm0.0090$                 | $0.277 \pm 0.050$                        | $0.03813 \pm 0.00057$                          | $241 \pm 3$                                      |                                                    |
| 10.1                | r                         | 1.71                               | 277         | 262         | 0.95      | 9.81                        | 0.00093                         | $0.0567\pm0.0085$                 | $0.317 \pm 0.048$                        | $0.04051\pm0.00057$                            | 256±3                                            |                                                    |
| 11.1                | r                         | 3.95                               | 124         | 94          | 0.75      | 4.62                        | 0.00216                         | $0.0630\pm0.0132$                 | $0.362 \pm 0.080$                        | $0.04155\pm0.00091$                            | 262±6                                            |                                                    |
| 12.1                | r                         | 4.35                               | 240         | 130         | 0.54      | 8.78                        | 0.00238                         | $0.0600\pm0.0120$                 | $0.339 \pm 0.071$                        | $0.04065 \pm 0.00077$                          | 257±5                                            |                                                    |
| 12.2                | ш                         | 3.45                               | 332         | 323         | 0.97      | 11.8                        | 0.00188                         | $0.0740\pm0.0126$                 | $0.406 \pm 0.069$                        | $0.03985 \pm 0.00056$                          | 252±3                                            |                                                    |
| 13.1                | r                         | 1.81                               | 250         | 245         | 0.98      | 9.08                        | 0.00099                         | $0.0643\pm0.0084$                 | $0.368 \pm 0.048$                        | $0.04155\pm0.00066$                            | 262±4                                            |                                                    |
| 13.2                | ш                         | 2.29                               | 223         | 355         | 1.59      | 8.48                        | 0.00125                         | $0.0620\pm0.0105$                 | $0.372 \pm 0.063$                        | $0.04324 \pm 0.00074$                          | 273±5                                            |                                                    |
| 14.1                | r                         | 1.61                               | 2122        | 4686        | 2.21      | 77.1                        | 0.00088                         | $0.0579\pm0.0032$                 | $0.332 \pm 0.018$                        | $0.04160 \pm 0.00028$                          | 263±2                                            |                                                    |
| 14.2                | ш                         | 0.21                               | 5392        | 11090       | 2.06      | 182                         | 0.00012                         | $0.0520\pm0.0006$                 | $0.282 \pm 0.004$                        | $0.03924 \pm 0.00016$                          | 248±1                                            |                                                    |
| Errors ar           | re 1ơ; Pb <sub>c</sub> aı | nd Pb* indi                        | cate the co | mmon an     | d radioge | nic portic                  | ons, respective                 | ely; Common Pb c                  | orrected with <sup>208</sup> ]           | Pb/ <sup>206</sup> Pb=2.097, <sup>207</sup> Pl | b/ <sup>206</sup> Pb=0.86                        | 4                                                  |
| $^{206}Pb/^{204}Pb$ | )=18.052. Gi              | rain area as                       | interpreted | l from CL   | images;   | c: core (r                  | ounded core ı                   | isually is discorda               | nt to mantle or ri                       | m), m, mantle (area l                          | between core                                     | and rim                                            |

~

without clear oscillatory zones); r, rim (usually with oscillatory zones)

| <sup>206</sup> ph*/ <sup>238</sup> [] <sup>207</sup> ph*/ <sup>235</sup> [] <sup>207</sup> ph*/ <sup>206</sup> ph* | Age (Ma) Age (Ma) Age (Ma)                                            |                   | 346±2 373±8         |                     | $303\pm1$ $308\pm3$   | 303±1 308±3<br>305±2 308±4 | 303±1 308±3<br>305±2 308±4<br>313±2 326±4 | 303±1         308±3           305±2         308±4           313±2         326±4           305±1         305±3 | 303±1         308±3           305±2         308±4           313±2         308±4           313±2         305±1           305±1         305±3           305±1         307±2 | 303±1         308±3           305±2         308±4           305±2         308±4           313±2         326±4           305±1         305±3           305±1         307±2           305±1         307±2           305±4         1745±6 | 303±1         308±3           305±2         308±4           315±2         308±4           313±2         326±4           305±1         305±3           305±1         307±2           1745±6         1781±4         1822±18           306±2         314±3 | 303±1         308±3           305±2         308±4           313±2         308±4           313±2         305±4           305±1         305±3           305±1         305±3           305±1         307±2           305±2         314±3           306±2         314±3           303±2         329±6 | 303±1     308±3       305±2     308±4       313±2     308±4       313±2     326±4       305±1     305±3       305±1     305±3       305±1     307±2       305±2     314±3       303±2     329±6       303±2     277±8 | 303±1     308±3       305±2     308±4       313±2     305±4       313±2     326±4       305±1     305±3       305±1     305±3       305±1     307±2       1745±6     1781±4       1745±6     1781±4       306±2     314±3       305±2     329±6       303±2     329±6       276±2     277±8       304±1     308±4 | 303±1     308±3       305±2     308±4       313±2     305±4       313±2     326±4       305±1     305±3       305±1     305±3       305±1     307±2       1745±6     1781±4       1745±6     1781±4       305±2     314±3       305±2     314±3       303±2     329±6       276±2     277±8       304±1     308±4       306±2     300±7       295±2     300±7 | 303±1     308±3       305±2     308±4       305±1     308±4       313±2     305±1       305±1     305±3       305±1     305±3       305±1     307±2       1745±6     1781±4       1745±6     1781±4       305±2     314±3       305±2     314±3       305±2     314±3       304±1     308±4       204±2     310±7       304±2     310±7       304±2     310±7 | 303±1       308±3         305±2       308±4         313±2       305±1         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       307±2         1745±6       1781±4         1745±6       1781±4         306±2       314±3         303±2       329±6         304±1       308±4         205±2       300±7         304±2       310±4         303±2       306±6 | 303±1       308±3         305±2       308±4         313±2       305±4         313±2       326±4         305±1       305±3         305±1       305±3         305±1       305±3         305±1       307±2         1745±6       1781±4         1745±6       1781±4         306±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         295±2       300±7         304±2       310±4         303±2       306±6         303±2       297±4 | 303±1       308±3         305±2       308±4         313±2       305±4         313±2       326±4         305±1       305±3         305±1       305±3         3055±1       307±2         1745±6       1781±4       1822±18         306±2       314±3         305±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         304±1       308±4         303±2       300±7         304±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4 | 303±1308±3305±2308±4313±2305±1305±1305±1305±1305±3305±1307±21745±61781±41745±61781±41745±61781±41822±18306±2314±3303±2329±6276±2277±8304±1308±4295±2300±7303±2306±6295±2310±4303±2297±6296±2297±4305±2314±4 | 303±1       308±3         305±2       308±4         313±2       326±4         313±2       326±4         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       307±2         1745±6       1781±4         1745±1       1781±4         306±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         308±4       308±4         296±2       277±8         303±2       306±6         296±2       297±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       314±4         272±1       249±2 | 303±1     308±3       305±2     308±4       313±2     326±4       313±2     326±4       305±1     305±3       305±1     305±3       305±1     305±3       305±1     307±2       305±2     307±2       305±2     307±2       305±2     307±2       305±2     307±2       305±2     314±3       305±2     314±3       305±2     314±3       304±1     308±4       295±2     300±7       303±2     205±6       205±2     310±4       303±2     306±6       296±2     297±4       305±2     314±4       305±2     314±4       305±2     314±4       242±1     249±2       243±1     252±4 | 303±1       308±3         305±2       308±4         313±2       326±4         313±2       326±4         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       307±2         1745±6       1781±4         1745±6       1781±4         306±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         303±2       300±7         303±2       300±7         303±2       310±4         303±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       314±4         275±4       275±4         245±1       252±4         246±1       257±3 | 303±1       308±3         305±2       308±4         313±2       305±4         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±4         305±1       305±3         305±1       307±2         1745±6       1781±4         1745±6       1781±4         306±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         303±2       300±7         303±2       300±7         303±2       310±4         303±2       310±4         303±2       310±4         303±2       310±4         303±2       310±4         305±2       310±4         305±2       314±4         245±1       252±4         279±1       666±3         279±1       666±3 | 303±1       308±3         305±2       308±4         313±2       305±1         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       307±2         1745±6       1781±4         1745±6       1781±4         306±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         303±2       300±7         303±2       300±7         303±2       310±4         303±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       297±4         245±1       252±4         279±1       666±3         279±1       666±3         279±1       317±3 | 303±1       308±3         305±2       308±4         313±2       305±1         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±2       314±3         306±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         295±2       300±7         304±2       310±4         303±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         275±4       255±4         279±1       266±3         279±1       257±3         279±1       266±3         279±1       266±3         279±1       266±3         279±1       266±3         279±1       261±3 | 303±1       308±3         305±2       308±4         313±2       305±1         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         303±2       300±7         304±2       310±4         303±2       306±6         295±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         275±4       277±3         277±3       277±3         277±3       277±3         277±3       277±3         277±1       275±4         27 | 303±1       308±3         305±2       308±4         313±2       305±1         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±4         305±1       305±3         305±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         303±2       300±7         304±2       310±4         303±2       306±6         295±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         275±4       257±4         279±1       257±3         279±1       257±3         279±1       257±3         279±1       257±3         279±1       266±3         279±1       261±3         277±3       275±3         28 | 303±1       308±3         305±2       308±4         313±2       305±1         305±1       305±1         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±3         305±1       305±4         305±1       305±3         305±1       305±2         305±2       314±3         305±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         303±2       306±6         295±2       310±4         303±2       306±6         295±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         279±1       257±4         279±1       257±3         279±1       257±3         279±1       257±3         279±1       266±3         279±1       261±3         279±1       261±3         279±1       261±3         28 | 303±1       308±3         305±2       308±4         313±2       305±1         305±1       305±1         305±1       305±3         305±1       305±1         305±1       305±3         305±1       305±1         305±1       305±1         305±1       305±3         305±2       314±3         305±2       314±3         303±2       314±3         303±2       314±3         303±2       308±4         295±2       300±7         304±1       308±4         303±2       306±6         295±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       311±3         279±1       257±4         279±1       257±3         279±1       257±3         279±1       257±3         279±1       266±3         279±1       265±3         279±1       265±3         289±1       262±3         20 | 303±1       308±3         305±2       308±4         313±2       305±1         305±1       305±3         305±1       305±3         305±1       305±1         305±1       305±3         305±1       305±3         305±1       305±3         305±1       307±2         1745±6       1781±4         1745±6       1781±4         306±2       314±3         303±2       329±6         277±8       308±4         303±2       308±4         303±2       306±6         295±2       300±7         303±2       306±6         296±2       297±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       311±3         279±1       257±4         279±1       257±3         279±1       257±3         279±1       266±3         279±1       266±3         279±1       265±3         279±1       265±3         276±3       302±6 <t< th=""><th>303±1       308±3         305±2       308±4         313±2       326±4         305±1       305±1         305±1       305±3         305±1       305±1         305±1       305±3         305±1       305±1         305±1       305±3         305±1       307±2         1745±6       1781±4         1745±6       1781±4         306±2       314±3         303±2       329±6         277±8       308±4         303±2       306±6         295±2       300±7         303±2       306±6         296±2       297±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         246±1       257±4         279±1       257±4         279±1       257±3         279±1       266±3         279±1       261±3         279±1       262±3         279±1       262±3         270±5       274±5         <t< th=""><th>303±1       308±3         305±2       308±4         313±2       326±4         305±1       305±1         305±1       305±3         305±1       305±1         305±1       305±1         305±1       305±1         305±1       305±1         305±1       305±1         305±2       314±3         306±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         303±2       306±6         295±2       300±7         303±2       305±6         295±2       300±7         303±2       277±8         303±2       306±6         295±2       310±4         305±2       310±4         305±2       310±4         305±2       317±3         279±1       257±3         279±1       257±3         279±1       257±3         233±2       302±5         233±2       302±5         246±2       302±5         247±2       243±9         243±5       243±6         24</th></t<></th></t<> | 303±1       308±3         305±2       308±4         313±2       326±4         305±1       305±1         305±1       305±3         305±1       305±1         305±1       305±3         305±1       305±1         305±1       305±3         305±1       307±2         1745±6       1781±4         1745±6       1781±4         306±2       314±3         303±2       329±6         277±8       308±4         303±2       306±6         295±2       300±7         303±2       306±6         296±2       297±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         305±2       310±4         246±1       257±4         279±1       257±4         279±1       257±3         279±1       266±3         279±1       261±3         279±1       262±3         279±1       262±3         270±5       274±5 <t< th=""><th>303±1       308±3         305±2       308±4         313±2       326±4         305±1       305±1         305±1       305±3         305±1       305±1         305±1       305±1         305±1       305±1         305±1       305±1         305±1       305±1         305±2       314±3         306±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         303±2       306±6         295±2       300±7         303±2       305±6         295±2       300±7         303±2       277±8         303±2       306±6         295±2       310±4         305±2       310±4         305±2       310±4         305±2       317±3         279±1       257±3         279±1       257±3         279±1       257±3         233±2       302±5         233±2       302±5         246±2       302±5         247±2       243±9         243±5       243±6         24</th></t<> | 303±1       308±3         305±2       308±4         313±2       326±4         305±1       305±1         305±1       305±3         305±1       305±1         305±1       305±1         305±1       305±1         305±1       305±1         305±1       305±1         305±2       314±3         306±2       314±3         303±2       329±6         276±2       277±8         304±1       308±4         303±2       306±6         295±2       300±7         303±2       305±6         295±2       300±7         303±2       277±8         303±2       306±6         295±2       310±4         305±2       310±4         305±2       310±4         305±2       317±3         279±1       257±3         279±1       257±3         279±1       257±3         233±2       302±5         233±2       302±5         246±2       302±5         247±2       243±9         243±5       243±6         24 |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|---------------------|---------------------|-----------------------|----------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 206*238                                                                                                            | $\prod_{\alpha \in \mathbb{Z}}/\mathbf{Q}_{\alpha \alpha \mathbb{Z}}$ |                   | $0.05511\pm0.00034$ | $0.04819\pm0.00023$ | $0.04841 \pm 0.00026$ | $0.04970\pm0.00027$        | $0.04845\pm0.00024$                       | $0.04838\pm0.00021$                                                                                           | $0.31095\pm0.00129$                                                                                                                                                       | $0.04860\pm0.00025$                                                                                                                                                                                                                    | $0.04806\pm0.00031$                                                                                                                                                                                                                                     | $0.04382 \pm 0.00028$                                                                                                                                                                                                                                                                             | $0.04821\pm0.00024$                                                                                                                                                                                                   | $0.04682 \pm 0.00030$                                                                                                                                                                                                                                                                                             | $0.04826\pm0.00026$                                                                                                                                                                                                                                                                                                                                           | $0.04808 \pm 0.00026$                                                                                                                                                                                                                                                                                                                                         | $0.04696\pm0.00027$                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.04841\pm0.00025$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.03821 \pm 0.00018$                                                                                                                                                                                       | $0.03849\pm0.00023$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.03896\pm0.00019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.04430\pm0.00021$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.03736\pm0.00019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.04084\pm0.00020$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.03752\pm0.00019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.04585\pm0.00020$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.03922\pm0.00021$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.03680\pm0.00025$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.03891\pm0.00025$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.03799\pm0.00026$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.03830\pm0.00028$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.03820\pm0.00018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 207*.235                                                                                                           | $\Omega_{ccz}/\mathbf{Q}d_{mz}$                                       |                   | $0.44452\pm0.01069$ | $0.35447\pm0.00357$ | $0.35490\pm0.00537$   | $0.37818\pm0.00553$        | $0.34994\pm0.00438$                       | $0.35255\pm0.00271$                                                                                           | $4.77510\pm0.02052$                                                                                                                                                       | $0.36256\pm0.00464$                                                                                                                                                                                                                    | $0.38210\pm0.00764$                                                                                                                                                                                                                                     | $0.31313\pm0.01006$                                                                                                                                                                                                                                                                               | $0.35438\pm0.00472$                                                                                                                                                                                                   | $0.34386\pm0.00906$                                                                                                                                                                                                                                                                                               | $0.35759\pm0.00539$                                                                                                                                                                                                                                                                                                                                           | $0.35225\pm0.00735$                                                                                                                                                                                                                                                                                                                                           | $0.33937\pm0.00581$                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.36173\pm0.00506$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.27729\pm0.00298$                                                                                                                                                                                         | $0.28215\pm0.00554$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.28784\pm0.00327$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.92661\pm0.00658$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.36613\pm0.00426$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.29358\pm0.00356$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.27293\pm0.00362$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.39905\pm0.00270$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.29380\pm0.00443$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.34609\pm0.00719$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.34691\pm0.00739$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.27141\pm0.00760$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.27095\pm0.01137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.27517±0.00318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| * <del>7</del> 00 * L00                                                                                            | $qd_{007}/qd_{107}$                                                   |                   | $0.05850\pm0.00145$ | $0.05334\pm0.00073$ | $0.05316\pm0.00095$   | $0.05518\pm0.00096$        | $0.05238\pm0.00082$                       | $0.05284\pm0.00063$                                                                                           | $0.11136\pm0.00112$                                                                                                                                                       | $0.05409\pm0.00086$                                                                                                                                                                                                                    | $0.05765\pm0.00129$                                                                                                                                                                                                                                     | $0.05182 \pm 0.00170$                                                                                                                                                                                                                                                                             | $0.05330\pm0.00087$                                                                                                                                                                                                   | $0.05327\pm0.00144$                                                                                                                                                                                                                                                                                               | $0.05373\pm0.00096$                                                                                                                                                                                                                                                                                                                                           | $0.05313\pm0.00115$                                                                                                                                                                                                                                                                                                                                           | $0.05240\pm0.00103$                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.05418\pm0.00091$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.05262\pm0.00075$                                                                                                                                                                                         | $0.05316\pm0.00117$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.05357\pm0.00079$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.15169\pm0.00177$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.07108 \pm 0.00106$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.05213\pm0.00080$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.05275\pm0.00086$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.06312\pm0.00072$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.05432\pm0.00097$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.06820\pm0.00158$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.06465\pm0.00152$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.05180\pm0.00154$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.05131\pm0.00219$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.05224\pm0.00078$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                    | $qd_{nn^2}/qd_{nn^2}$                                                 |                   | 0.00239             | 0.00145             | 0.00131               | 0.00253                    | 0.00136                                   | 0.00102                                                                                                       | 0.00005                                                                                                                                                                   | 0.00158                                                                                                                                                                                                                                | <0.00057                                                                                                                                                                                                                                                | 0.00355                                                                                                                                                                                                                                                                                           | < 0.00135                                                                                                                                                                                                             | 0.00233                                                                                                                                                                                                                                                                                                           | 0.00293                                                                                                                                                                                                                                                                                                                                                       | 0.00237                                                                                                                                                                                                                                                                                                                                                       | 0.00241                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00311                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00434                                                                                                                                                                                                     | 0.00747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.00213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <sup>232</sup> Th/                                                                                                 | $^{238}$ U                                                            |                   | 0.74                | 0.89                | 0.45                  | 0.58                       | 0.59                                      | 0.60                                                                                                          | 0.56                                                                                                                                                                      | 0.57                                                                                                                                                                                                                                   | 0.36                                                                                                                                                                                                                                                    | 0.63                                                                                                                                                                                                                                                                                              | 0.65                                                                                                                                                                                                                  | 0.62                                                                                                                                                                                                                                                                                                              | 0.56                                                                                                                                                                                                                                                                                                                                                          | 0.61                                                                                                                                                                                                                                                                                                                                                          | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.33                                                                                                                                                                                                        | 1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <sup>232</sup> Th                                                                                                  | (mqq)                                                                 |                   | 242.3               | 319.4               | 206.0                 | 98.7                       | 152.2                                     | 409.0                                                                                                         | 523.1                                                                                                                                                                     | 111.9                                                                                                                                                                                                                                  | 131.9                                                                                                                                                                                                                                                   | 140.9                                                                                                                                                                                                                                                                                             | 104.4                                                                                                                                                                                                                 | 102.4                                                                                                                                                                                                                                                                                                             | 70.9                                                                                                                                                                                                                                                                                                                                                          | 117.6                                                                                                                                                                                                                                                                                                                                                         | 119.6                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 360.4                                                                                                                                                                                                       | 236.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 346.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 415.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 511.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 516.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 494.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 405.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 700.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $1^{238}$                                                                                                          | (mdd)                                                                 |                   | 327.6               | 358.1               | 454.6                 | 169.9                      | 257.1                                     | 683.3                                                                                                         | 941.5                                                                                                                                                                     | 196.0                                                                                                                                                                                                                                  | 362.1                                                                                                                                                                                                                                                   | 221.9                                                                                                                                                                                                                                                                                             | 160.4                                                                                                                                                                                                                 | 164.9                                                                                                                                                                                                                                                                                                             | 125.6                                                                                                                                                                                                                                                                                                                                                         | 192.4                                                                                                                                                                                                                                                                                                                                                         | 183.3                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 169.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 270.3                                                                                                                                                                                                       | 139.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 237.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 292.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 459.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 231.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 303.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 755.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 144.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 174.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 316.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ъh                                                                                                                 | (mdd)                                                                 | ß                 | 24.57               | 23.97               | 27.14                 | 10.95                      | 16.03                                     | 42.13                                                                                                         | 384.08                                                                                                                                                                    | 12.23                                                                                                                                                                                                                                  | 21.26                                                                                                                                                                                                                                                   | 13.86                                                                                                                                                                                                                                                                                             | 9.99                                                                                                                                                                                                                  | 9.95                                                                                                                                                                                                                                                                                                              | 7.65                                                                                                                                                                                                                                                                                                                                                          | 12.21                                                                                                                                                                                                                                                                                                                                                         | 11.02                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.03                                                                                                                                                                                                       | 8.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    | ot Grain area                                                         | D315 from Jianpii | r                   | r                   | r                     | r                          | r                                         | r                                                                                                             | r/c                                                                                                                                                                       | r                                                                                                                                                                                                                                      | r                                                                                                                                                                                                                                                       | r                                                                                                                                                                                                                                                                                                 | r                                                                                                                                                                                                                     | r                                                                                                                                                                                                                                                                                                                 | r                                                                                                                                                                                                                                                                                                                                                             | r                                                                                                                                                                                                                                                                                                                                                             | r                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D315-1 from Jian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r                                                                                                                                                                                                           | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                    | Grain-sp                                                              | Sample I          | 01                  | 02                  | 03                    | 04                         | 05                                        | 90                                                                                                            | 07                                                                                                                                                                        | 08                                                                                                                                                                                                                                     | 60                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01                                                                                                                                                                                                          | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table DR4 LA-ICP-MS U-Pb dating results of the Late Paleozoic-Early Mesozoic intrusions

 $\infty$ 

| Grain-spotGrain areaPtSample D315-3 from Jianping $(pp)$ 01r3.002r7.803r/c7.504r8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | udd) (u | L7C7 1   |                    |             |                       |                       |                         |                           |                                        |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------------------|-------------|-----------------------|-----------------------|-------------------------|---------------------------|----------------------------------------|----------------------------------------------------|
| Ortatil area         Optimization           Sample D315-3 from Jianping         01         r         3.0           01         r         7.8         0.7         5.0           02         r         7.8         0.7         5.0           03         r/c         7.5         0.4         7.5         0.4         5.0           04         r         r         8.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0 | udd) (u | 111      | $/\mathrm{H}^{22}$ | 204mL/206mL | 207mL*/206mL*         | 207 mb*/235r r        | 206 <b>mL</b> * /2381 T | $\Pi_{ec7}/_{2} qd_{on7}$ | $^{7}  \Omega_{cc7}/_{2}        \text$ | 0/Pb <sup>*</sup> / <sup>200</sup> Pb <sup>*</sup> |
| Sample D315-3 from Jianping<br>01 r $3.0$<br>02 r $7.8$<br>03 r/c $7.5$<br>04 r $8.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | (udd) (t | $^{238}$ U         | ro ro       | r0 / r0               | ro / u                | PD / U                  | Age (Ma)                  | Age (Ma)                               | Age (Ma)                                           |
| 01 r $3.0$<br>02 r $7.8$<br>03 $r/c$ $7.5$<br>04 r $8.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |                    |             |                       |                       |                         |                           |                                        |                                                    |
| 02 r 7.8<br>03 r/c 7.5<br>04 r 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00 48.2 | 3 63.9   | 1.32               | 0.02178     | $0.05107\pm0.00371$   | $0.27390\pm0.01969$   | $0.03890\pm0.00042$     | 246±3                     | $246\pm 16$                            |                                                    |
| 03 r/c 7.5<br>04 r 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33 133. | 2 144.7  | 1.09               | 0.00753     | $0.05981 \pm 0.00349$ | $0.31173\pm0.01790$   | $0.03780\pm0.00039$     | 239±2                     | 276±14                                 |                                                    |
| 04 r 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 58 117. | 2 195.5  | 1.67               | 0.00982     | $0.06047\pm0.00337$   | $0.30952 \pm 0.01698$ | $0.03712\pm0.00036$     | 235±2                     | 274±13                                 |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 153.    | 1 166.7  | 1.09               | 0.00363     | $0.05294\pm0.00166$   | $0.27391 \pm 0.00809$ | $0.03754\pm0.00028$     | $238\pm 2$                | $246\pm 6$                             |                                                    |
| 05 r 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90 190. | 5 350.3  | 1.84               | 0.00296     | $0.05064 \pm 0.00143$ | $0.26232\pm0.00687$   | $0.03758 \pm 0.00027$   | $238\pm 2$                | 237±6                                  |                                                    |
| 06 r 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06 33.  | 1 58.0   | 1.75               | <0.01091    | $0.05620\pm0.00419$   | $0.29097\pm0.02133$   | $0.03756\pm0.00050$     | $238\pm3$                 | 259±17                                 |                                                    |
| 07 r 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 204. | 4 606.4  | 2.97               | 0.00259     | $0.05426\pm0.00128$   | $0.28030 \pm 0.00602$ | $0.03748\pm0.00024$     | $237\pm 1$                | 251±5                                  |                                                    |
| 08 r 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38 74.: | 5 75.4   | 1.01               | <0.00420    | $0.05355\pm0.00316$   | $0.27776\pm0.01617$   | $0.03762\pm0.00038$     | $238\pm 2$                | 249±13                                 |                                                    |
| 09 r 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47 203. | 2 318.4  | 1.57               | < 0.00188   | $0.06210\pm0.00233$   | $0.32009\pm0.01175$   | $0.03739\pm0.00028$     | 237±2                     | 282±9                                  |                                                    |
| 10 r 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51 47.2 | 2 55.0   | 1.16               | 0.01095     | $0.05343\pm0.00617$   | $0.27119\pm0.03076$   | $0.03683 \pm 0.00088$   | $233\pm 5$                | 244±25                                 |                                                    |
| 11 r 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 143. | 6 201.0  | 1.40               | 0.00309     | $0.05259\pm0.00259$   | $0.27146\pm0.01314$   | $0.03743\pm0.00032$     | 237±2                     | $244{\pm}10$                           |                                                    |
| 12 r 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72 110. | 2 211.8  | 1.92               | <0.00274    | $0.05605\pm0.00216$   | $0.28896\pm0.01060$   | $0.03741\pm0.00036$     | 237±2                     | 258±8                                  |                                                    |
| 13 r 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 140. | 9 194.6  | 1.38               | 0.00529     | $0.05318\pm0.00167$   | $0.27604 \pm 0.00817$ | $0.03766\pm0.00029$     | $238\pm 2$                | 248±7                                  |                                                    |
| 14 r 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70 90.( | ) 125.9  | 1.40               | 0.01362     | $0.05063 \pm 0.00634$ | $0.23741\pm0.02943$   | $0.03401\pm0.00059$     | $216\pm 4$                | $216\pm 24$                            |                                                    |
| 15 r 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35 255. | 5 469.3  | 1.84               | 0.00151     | $0.05425\pm0.00141$   | $0.30845\pm0.00736$   | $0.04125\pm0.00028$     | $261\pm 2$                | 273±6                                  |                                                    |
| 16 r 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08 247. | 7 232.8  | 0.94               | <0.00170    | $0.05529\pm0.00125$   | $0.28362 \pm 0.00574$ | $0.03721\pm0.00023$     | $236\pm 1$                | 254±5                                  |                                                    |

Errors are 1 o; Pb refers to total Pb; Pb\* indicate the radiogenic lead portion; Common Pb corrected using method described by Andersen (2002); Grain area

interpretation is as same as Table DR3.

|          |            |             |            |        |        | ,       |              |            | •         |             |            |            |         |        |       |        |       |        |
|----------|------------|-------------|------------|--------|--------|---------|--------------|------------|-----------|-------------|------------|------------|---------|--------|-------|--------|-------|--------|
| ype      |            |             |            |        |        | qua     | urtz diorite | , diorite, | granodior | ite, granit | e, hornble | inde gabbi | ro      |        |       |        |       |        |
| ber Sl   | D020-3*    | $SD020-1^*$ | $D018-1^*$ | D018-3 | D018-5 | D169-2* | D224-1       | D239-1     | D195-1    | HLB-G*      | D107-1     | D203-1     | $FP2^*$ | FP3    | HFH-1 | D315   | D316  | D322-1 |
| ion      | LH         | ΓH          | DGD        | DGD    | DGD    | DGD     | DGD          | DGD        | DGD       | BLN         | BLN        | BLN        | HSH     | HSH    | HSH   | ſſ     | JP    | JP     |
| element  | t oxides ( | (wt%)       |            |        |        |         |              |            |           |             |            |            |         |        |       |        |       |        |
| 2        | 61.32      | 58.01       | 66.71      | 72.46  | 71.26  | 63.06   | 55.16        | 55.68      | 46.46     | 67.70       | 59.17      | 50.48      | 69.34   | 71.06  | 73.37 | 64.16  | 63.86 | 60.09  |
| 2        | 0.60       | 0.68        | 0.14       | 0.12   | 0.18   | 0.62    | 0.85         | 0.78       | 1.40      | 0.17        | 0.47       | 0.81       | 0.09    | 0.11   | 0.06  | 0.50   | 0.50  | 0.76   |
|          | 17.69      | 17.83       | 18.62      | 15.24  | 14.76  | 17.34   | 19.35        | 18.00      | 19.98     | 17.37       | 17.68      | 19.26      | 15.86   | 16.64  | 14.47 | 16.39  | 16.56 | 17.80  |
| $_{3}T$  | 5.71       | 6.45        | 1.37       | 1.14   | 1.57   | 4.70    | 7.63         | 8.57       | 11.44     | 2.04        | 5.34       | 7.89       | 0.76    | 0.90   | 0.74  | 4.97   | 4.63  | 6.34   |
| 0        | 0.11       | 0.12        | 0.04       | 0.02   | 0.06   | 0.07    | 0.14         | 0.14       | 0.13      | 0.04        | 0.07       | 0.09       | 0.01    | 0.02   | 0.02  | 0.11   | 0.11  | 0.14   |
| 0        | 2.09       | 2.55        | 0.43       | 0.32   | 0.59   | 1.79    | 2.68         | 3.64       | 4.16      | 0.76        | 4.10       | 5.17       | 0.20    | 0.26   | 0.22  | 2.18   | 2.00  | 2.31   |
| 0        | 5.86       | 5.57        | 3.16       | 1.40   | 1.79   | 4.79    | 5.99         | 6.63       | 9.48      | 3.06        | 5.89       | 8.55       | 1.72    | 1.55   | 1.27  | 5.64   | 5.24  | 6.28   |
| Q        | 3.74       | 3.55        | 6.63       | 5.30   | 5.34   | 4.78    | 4.74         | 3.88       | 3.54      | 6.26        | 4.92       | 4.72       | 5.86    | 5.97   | 4.50  | 3.47   | 3.54  | 3.30   |
| 0        | 2.00       | 2.87        | 1.81       | 3.26   | 3.37   | 1.49    | 2.46         | 1.75       | 1.46      | 1.38        | 1.41       | 0.50       | 2.73    | 3.01   | 3.93  | 2.12   | 2.54  | 2.10   |
| °.       | 0.27       | 0.33        | 0.07       | 0.05   | 0.11   | 0.27    | 0.50         | 0.30       | 0.40      | 0.07        | 0.16       | 0.36       | 0.03    | 0.04   | 0.02  | 0.19   | 0.20  | 0.33   |
| ÍC       | 0.79       | 2.20        | 1.11       | 0.90   | 1.04   | 0.55    | 0.64         | 0.59       | 1.45      | 1.09        | 0.68       | 1.52       | 3.36    | 0.65   | 0.93  | 0.33   | 0.66  | 0.84   |
| tal      | 100.18     | 100.15      | 100.09     | 100.20 | 100.07 | 99.46   | 100.14       | 96.66      | 99.90     | 99.94       | 99.89      | 99.35      | 96.66   | 100.21 | 99.55 | 100.06 | 99.84 | 100.29 |
| NK       | 0.93       | 0.93        | 1.00       | 1.03   | 0.94   | 0.95    | 0.91         | 0.89       | 0.81      | 1.00        | 0.87       | 0.81       | 1.01    | 1.05   | 1.04  | 0.90   | 0.91  | 0.93   |
| ٨K       | 2.13       | 1.99        | 1.45       | 1.24   | 1.19   | 1.83    | 1.85         | 2.17       | 2.70      | 1.47        | 1.84       | 2.32       | 1.26    | 1.27   | 1.24  | 2.05   | 1.93  | 2.31   |
| $/K_2O$  | 1.87       | 1.24        | 3.66       | 1.63   | 1.58   | 3.21    | 1.93         | 2.22       | 2.42      | 4.54        | 3.49       | 9.44       | 2.15    | 1.98   | 1.15  | 1.64   | 1.39  | 1.57   |
| /CaO     | 0.64       | 0.64        | 2.10       | 3.78   | 2.98   | 1.00    | 0.79         | 0.59       | 0.37      | 2.05        | 0.84       | 0.55       | 3.41    | 3.85   | 3.54  | 0.62   | 0.68  | 0.53   |
| FeOT     | 0.41       | 0.44        | 0.35       | 0.31   | 0.41   | 0.42    | 0.39         | 0.47       | 0.40      | 0.41        | 0.85       | 0.73       | 0.29    | 0.32   | 0.33  | 0.49   | 0.48  | 0.40   |
| MnO      | 19.00      | 21.25       | 10.75      | 12.68  | 10.30  | 25.57   | 19.14        | 26.00      | 32.00     | 19.00       | 58.57      | 57.44      | 20.00   | 13.00  | 10.18 | 19.82  | 18.18 | 16.50  |
| #3       | 42.0       | 43.9        | 38.4       | 35.7   | 42.4   | 43.0    | 41.0         | 45.7       | 41.9      | 42.4        | 60.4       | 56.5       | 34.4    | 36.4   | 37.4  | 46.5   | 46.1  | 41.9   |
| elements | (udd) s    |             |            |        |        |         |              |            |           |             |            |            |         |        |       |        |       |        |
| в        | 55.12      | 58.08       | 15.36      | 13.32  | 16.01  | 22.47   | 30.54        | 14.11      | 22.08     | 18.80       | 14.39      | 12.55      | 10.04   | 3.64   | 15.56 | 29.71  | 37.27 | 52.26  |
| 0        | 96.66      | 109.61      | 26.69      | 23.57  | 23.96  | 39.74   | 63.34        | 29.56      | 45.19     | 33.05       | 25.68      | 28.64      | 17.37   | 5.66   | 31.26 | 52.93  | 70.34 | 95.04  |
| L        | 11.26      | 12.59       | 2.56       | 4.16   | 3.16   | 4.96    | 7.63         | 4.63       | 6.28      | 3.59        | 2.94       | 4.09       | 1.93    | 0.59   | 3.60  | 5.87   | 6.94  | 10.08  |
| þ        | 41.23      | 47.57       | 8.58       | 13.17  | 12.56  | 20.31   | 30.81        | 22.62      | 28.22     | 12.59       | 12.20      | 20.04      | 6.93    | 2.19   | 12.57 | 23.00  | 25.50 | 39.92  |
| ц        | 8.47       | 7.58        | 1.94       | 3.21   | 3.23   | 3.33    | 5.13         | 4.72       | 5.54      | 2.78        | 2.05       | 3.75       | 0.93    | 0.30   | 2.53  | 3.88   | 4.15  | 7.58   |
| п        | 1.87       | 2.02        | 0.77       | 1.51   | 1.28   | 1.57    | 1.92         | 1.87       | 2.05      | 1.19        | 0.91       | 1.51       | 0.59    | 0.47   | 1.06  | 1.39   | 1.45  | 2.14   |
| q        | 5.97       | 6.48        | 1.38       | 1.53   | 1.81   | 2.86    | 4.78         | 4.49       | 5.13      | 1.63        | 1.82       | 3.15       | 0.77    | 0.33   | 1.12  | 3.27   | 3.71  | 6.96   |
| þ        | 0.75       | 0.82        | 0.17       | 0.23   | 0.28   | 0.39    | 0.69         | 0.67       | 0.76      | 0.17        | 0.26       | 0.45       | 0.08    | 0.03   | 0.17  | 0.49   | 0.46  | 1.02   |
| y        | 3.36       | 3.92        | 0.78       | 1.13   | 1.35   | 1.90    | 3.72         | 3.63       | 4.00      | 0.76        | 1.45       | 2.21       | 0.39    | 0.17   | 0.84  | 2.58   | 2.37  | 5.40   |
| 0        | 0.64       | 0.74        | 0.14       | 0.21   | 0.25   | 0.35    | 0.72         | 0.71       | 0.77      | 0.14        | 0.29       | 0.42       | 0.07    | 0.03   | 0.16  | 0.50   | 0.46  | 1.10   |
| L        | 1.85       | 2.24        | 0.43       | 0.58   | 0.77   | 0.95    | 2.20         | 2.00       | 2.09      | 0.40        | 0.83       | 1.18       | 0.22    | 0.10   | 0.51  | 1.53   | 1.32  | 3.19   |
| ц        | 0.24       | 0.29        | 0.06       | 0.08   | 0.11   | 0.12    | 0.32         | 0.27       | 0.28      | 0.05        | 0.11       | 0.16       | 0.03    | 0.02   | 0.08  | 0.23   | 0.20  | 0.46   |
| q        | 1.54       | 1 90        | 0 44       | 0.56   | 0.76   | 0.82    | 2.28         | 1 88       | 1 84      | 037         | 0.81       | 1 05       | 0.25    | 0.12   | 0.58  | 1 76   | 1 35  | 2.96   |

Table DR5 Major and trace element compositions of the Carboniferous rocks

| <i>-</i> - |          |      | 6      | 5           | -                                  |       |      |       |       |               |       | 6     | 6                   | 2      |       | 8      | +     | 6      |      | -    | 2     |      |      | <b>C</b> 1 | ~     | 5     | ŝ     | _ ا    | , loss                    |   |
|------------|----------|------|--------|-------------|------------------------------------|-------|------|-------|-------|---------------|-------|-------|---------------------|--------|-------|--------|-------|--------|------|------|-------|------|------|------------|-------|-------|-------|--------|---------------------------|---|
| D322       | ď        | 0.46 | 228.5  | 11.9        | 0.90                               | n.a.  | n.a. | 12.3  | 9.91  | n.a.          | 4.57  | 22.0( | 56.09               | 778.   | 28.1  | 221.9  | 11.8  | 1162.  | 6.11 | 0.69 | 10.40 | 8.71 | 0.83 | 0.07       | 0.048 | 12.5  | 0.25  | 27.7(  | l; LOI                    |   |
| D316       | JP       | 0.23 | 155.75 | 18.71       | 1.13                               | n.a.  | n.a. | 9.24  | 10.21 | n.a.          | 4.60  | 19.13 | 72.40               | 487.4  | 11.93 | 102.39 | 10.02 | 688.6  | 3.33 | 0.67 | 11.16 | 9.27 | 1.06 | 0.149      | 0.105 | 13.82 | 0.707 | 40.84  | $\frac{1}{2O_3}$ tota     | , |
| D315       | Ъ        | 0.28 | 127.42 | 11.40       | 1.19                               | n.a.  | n.a. | 8.86  | 10.18 | n.a.          | 4.10  | 17.26 | 44.24               | 467.0  | 12.18 | 99.02  | 9.05  | 646.9  | 3.82 | 1.67 | 12.81 | 8.65 | 1.10 | 0.095      | 0.068 | 5.17  | 0.447 | 38.33  | _<br>О <sub>3</sub> Т, Fe | , |
| HFH-1      | HSH      | 0.10 | 70.11  | 18.12       | 1.92                               | 36.33 | 1.08 | 2.59  | 2.72  | 2.68          | 11.65 | 33.85 | 91.55               | 320.9  | 10.45 | 68.38  | 9.57  | 1428.9 | 2.22 | 0.74 | 26.29 | 4.15 | 0.54 | 0.285      | 0.064 | 5.61  | 1.339 | 30.71  | ton; Fe <sub>2</sub>      |   |
| FP3        | HSH      | 0.02 | 13.68  | 20.50       | 4.57                               | 8.35  | 0.40 | 1.23  | 1.66  | n.a.          | 15.60 | 12.62 | 19.44               | 990.0  | 1.13  | 41.57  | 3.41  | 3446.0 | 1.45 | 0.09 | 18.44 | 0.14 | 0.06 | 0.020      | 0.006 | 1.56  | 0.467 | 876.11 | _<br>oritic plu           | • |
| $FP2^*$    | HSH      | 0.04 | 39.64  | 27.14       | 2.13                               | 8.36  | 0.66 | 0.85  | 1.05  | n.a.          | 1.70  | 12.25 | 22.89               | 917.9  | 1.98  | 40.85  | 4.26  | 2892.4 | 1.43 | 0.20 | 19.37 | 3.06 | 0.22 | 0.025      | 0.008 | 15.30 | 0.560 | 464.52 | ping die                  | ) |
| D203-1     | BLN      | 0.15 | 79.34  | 8.08        | 1.34                               | 6.06  | 0.39 | 16.25 | 29.54 | n.a.          | 8.20  | 18.37 | 6.75                | 1765.5 | 9.88  | 33.00  | 1.92  | 427.5  | 1.43 | 0.17 | 2.29  | 0.22 | 0.09 | 0.004      | 0.016 | 1.29  | 0.205 | 178.64 | JP-Jiar                   |   |
| D107-1     | BLN      | 0.13 | 63.86  | 12.00       | 1.44                               | 10.55 | 0.63 | 12.30 | 21.11 | n.a.          | 7.11  | 16.64 | 16.63               | 1095.9 | 6.78  | 64.79  | 2.23  | 954.7  | 2.22 | 0.17 | 7.27  | 1.35 | 0.31 | 0.015      | 0.017 | 7.94  | 0.257 | 161.73 | a pluton;                 |   |
| HLB-G*     | BLN      | 0.05 | 75.57  | 34.34       | 1.71                               | 24.33 | 1.04 | 4.00  | 4.31  | 2.30          | 2.40  | 30.94 | 27.08               | 1215.1 | 8.44  | 46.23  | 8.51  | 1240.6 | 0.93 | 0.15 | 19.07 | 0.56 | 0.16 | 0.022      | 0.022 | 3.73  | 0.586 | 143.97 | -Hushiha                  |   |
| D195-1     | DGD      | 0.26 | 124.50 | 8.13        | 1.18                               | 8.33  | 1.10 | 26.39 | 34.07 | n.a.          | 48.26 | 21.00 | 25.94               | 1203.9 | 17.15 | 35.81  | 4.86  | 515.4  | 1.85 | 0.30 | 3.67  | 0.32 | 0.10 | 0.022      | 0.050 | 1.07  | 0.724 | 70.20  | n; HSH-                   |   |
| D239-1     | DGD      | 0.28 | 91.42  | 5.07        | 1.24                               | 11.37 | 1.04 | 19.72 | 23.64 | n.a.          | 13.44 | 19.13 | 35.64               | 923.7  | 16.39 | 67.73  | 5.29  | 928.2  | 2.56 | 0.35 | 8.26  | 1.12 | 0.82 | 0.039      | 0.038 | 3.20  | 0.526 | 56.34  | uo pluto                  | • |
| D224-1     | DGD      | 0.36 | 154.44 | 9.05        | 1.19                               | 12.01 | 1.38 | 11.34 | 15.25 | n.a.          | 16.16 | 17.98 | 46.62               | 1123.9 | 18.07 | 161.35 | 6.20  | 1260.3 | 4.83 | 0.42 | 8.81  | 3.88 | 1.15 | 0.041      | 0.037 | 9.24  | 0.289 | 62.21  | -Boluon                   |   |
| D169-2*    | DGD      | 0.12 | 99.90  | 18.52       | 1.56                               | 6.19  | 0.62 | 7.88  | 10.84 | n.a.          | 2.84  | 18.84 | 14.61               | 1147.0 | 8.13  | 105.78 | 4.49  | 1017.3 | 3.55 | 0.20 | 4.87  | 2.15 | 0.42 | 0.013      | 0.014 | 10.75 | 0.138 | 141.07 | n; BLN-                   |   |
| D018-5     | DGD      | 0.12 | 65.64  | 14.27       | 1.62                               | 20.71 | 1.24 | 4.20  | 4.26  | 2.19          | 5.18  | 34.34 | 32.57               | 810.7  | 13.67 | 74.61  | 11.59 | 1477.2 | 2.33 | 0.43 | 20.14 | 2.56 | 0.56 | 0.040      | 0.022 | 5.95  | 0.437 | 59.30  | ng pluto                  | • |
| D018-3     | DGD      | 0.08 | 63.32  | 16.02       | 2.09                               | 34.68 | 0.86 | 2.09  | 1.74  | 2.45          | 1.49  | 40.56 | 31.92               | 639.2  | 13.86 | 57.46  | 4.97  | 1833.1 | 1.92 | 0.32 | 18.53 | 1.00 | 0.34 | 0.050      | 0.017 | 3.13  | 0.556 | 46.12  | guangdi                   | ) |
| D018-1*    | DGD      | 0.07 | 59.37  | 23.59       | 1.44                               | 12.90 | 1.76 | 3.05  | 2.34  | 2.73          | 4.39  | 23.58 | 29.90               | 914.0  | 10.55 | 81.99  | 6.87  | 432.9  | 2.11 | 0.22 | 15.48 | 1.55 | 0.33 | 0.033      | 0.069 | 7.05  | 0.365 | 86.64  | GD-Da                     |   |
| SD020-1*   | LΗ       | 0.29 | 254.13 | 20.66       | 0.88                               | 45.02 | 1.44 | 12.12 | 13.54 | 2.67          | 3.68  | 30.96 | 70.17               | 776.9  | 24.64 | 95.94  | 7.82  | 1089.0 | 2.42 | 0.44 | 17.49 | 8.44 | 0.45 | 0.090      | 0.064 | 19.18 | 0.731 | 31.53  | oluton; D                 |   |
| SD020-3*5  | LH       | 0.23 | 232.49 | 24.19       | 0.81                               | 46.35 | 1.56 | 9.03  | 12.76 | 2.83          | 2.89  | 32.11 | 44.17               | 859.5  | 23.49 | 99.64  | 14.46 | 1051.5 | 2.44 | 0.31 | 16.40 | 7.21 | 0.50 | 0.051      | 0.042 | 23.26 | 0.443 | 36.59  | onghua p                  | ) |
| Number (   | Location | Lu   | Σree   | $La_N/Yb_N$ | Eu <sub>N</sub> /Eu <sub>N</sub> * | Li    | Be   | Sc    | Co    | $\mathbf{As}$ | Cu    | Ga    | $\operatorname{Rb}$ | Sr     | Υ     | Zr     | Nb    | Ba     | Hf   | Та   | Pb    | Th   | Ŋ    | Rb/Sr      | Rb/Ba | Th/Ta | Rb/Zr | Sr/Y   | Note: LH–L                |   |

 $on \ ignition; \ A/CNK = molecular \ Al_2O_3/(CaO+Na_2O+K_2O); \ A/NK = molecular \ Al_2O_3/(Na_2O+K_2O); \ Eu_N, \ chondrite-normalized \ Eu; \ Eu_N*, \ (Sm_N \times Gd_N)^{1/2}, \ n.a., \ not \ A/CNK = molecular \ Al_2O_3/(CaO+Na_2O+K_2O); \ A/CNK = molecular \ Al_2O_3/(Na_2O+K_2O); \ Eu_N, \ chondrite-normalized \ Eu; \ Eu_N*, \ (Sm_N \times Gd_N)^{1/2}, \ n.a., \ not \ A/CNK = molecular \ Al_2O_3/(CaO+Na_2O+K_2O); \ A/CNK = molecular \ Al_2O_3/(CaO+Na_2O+K_2O); \ A/CNK = molecular \ Al_2O_3/(Na_2O+K_2O); \ Eu_N, \ chondrite-normalized \ Eu; \ Eu_N*, \ (Sm_N \times Gd_N)^{1/2}, \ n.a., \ not \ A/CNK = molecular \ Al_2O_3/(CaO+Na_2O+K_2O); \ A/CNK = molecular \ Al_2O_3/(Na_2O+K_2O); \ A/CNK = molecular \ Al_2O_3/(Na_2O+K_2O); \ A/CNK = molecular \ Al_2O_3/(CaO+Na_2O+K_2O); \ A/CNK = molecular \ Al_2O_3/(Na_2O+K_2O); \ A/CNK = molecular \ Al_2O_3/(Na_2O+K_2O+K_2O); \ A/CNK = molecular \ Al_2O_3/(Na_2O$ 

analyzed. Samples marked with asterisk are from Zhang et al. (2007).

Table DR5 (continued)

| Rock type                          |                | syeno         | granite,       | monzog | ranite  |                | syer           | nogranit | e, monz      | ogranite | , quartz | monzo  | nite           |
|------------------------------------|----------------|---------------|----------------|--------|---------|----------------|----------------|----------|--------------|----------|----------|--------|----------------|
| Number                             | D120-1         | D126-1        | D138-1         | D148-1 | HFG-G   | HFG-2          | D315-1         | D315-3   | D386-1       | D374     | D319     | D327   | D351           |
| Location                           | GLS            | GLS           | GLS            | GLS    | GLS     | GLS            | JP             | JP       | JP           | JP       | JP       | JP     | JP             |
| Major alan                         | ant orio       | las (nut)     | ()             | 010    | 010     | 025            |                | 01       | 01           | 01       | 01       |        | 01             |
| SiO                                | 76 15          | 77 46         | 75 23          | 72 63  | 74 81   | 73 36          | 72 21          | 71.68    | 76 32        | 72 20    | 72 33    | 75 70  | 64 82          |
| TiO <sub>2</sub>                   | 0.10           | 0.09          | 0 14           | 0.26   | 0.16    | 0.15           | 0.16           | 0.38     | 0.07         | 0.22     | 0.28     | 0.22   | 0.53           |
|                                    | 13.26          | 13.01         | 13 46          | 14 74  | 13 43   | 14 04          | 14 12          | 14 40    | 12 27        | 13 67    | 14 39    | 12.47  | 17 73          |
| Fe <sub>2</sub> O <sub>2</sub> T   | 0.70           | 0.48          | 0.82           | 1 11   | 0.62    | 0.61           | 1 64           | 2.22     | 1.56         | 2.53     | 1.62     | 1 48   | 2.45           |
| MnO                                | 0.04           | 0.01          | 0.02           | 0.02   | 0.01    | 0.01           | 0.03           | 0.07     | 0.01         | 0.09     | 0.04     | 0.03   | 0.06           |
| MgO                                | 0.09           | 0.08          | 0.11           | 0.21   | 0.16    | 0.15           | 0.33           | 0.51     | 0.03         | 0.18     | 0.16     | 0.12   | 0.24           |
| CaO                                | 0.69           | 0.66          | 0.60           | 0.71   | 0.54    | 0.98           | 1.16           | 1.26     | 0.52         | 0.96     | 0.75     | 0.52   | 0.85           |
| Na <sub>2</sub> O                  | 4.17           | 4.04          | 3.77           | 3.76   | 3.28    | 3.77           | 2.78           | 4.32     | 3.16         | 4.04     | 4.36     | 2.93   | 4.61           |
| K <sub>2</sub> O                   | 4.44           | 4.24          | 4.86           | 6.16   | 5.53    | 5.51           | 6.54           | 4.74     | 5.51         | 5.17     | 5.28     | 5.76   | 8.18           |
| $P_2O_5$                           | 0.02           | 0.01          | 0.03           | 0.02   | 0.04    | 0.04           | 0.07           | 0.12     | 0.02         | 0.06     | 0.07     | 0.03   | 0.07           |
| LÕĬ                                | 0.34           | 0.18          | 0.35           | 0.32   | 0.58    | 0.94           | 0.30           | 0.31     | 0.21         | 0.35     | 0.36     | 0.26   | 0.22           |
| Total                              | 100.00         | 100.26        | 99.39          | 99.94  | 99.16   | 99.56          | 99.34          | 100.01   | 99.68        | 99.47    | 99.64    | 99.52  | 99.76          |
| A/CNK                              | 1.03           | 1.05          | 1.07           | 1.04   | 1.09    | 1.01           | 1.03           | 0.99     | 1.01         | 0.98     | 1.01     | 1.04   | 0.99           |
| A/NK                               | 1.14           | 1.16          | 1.17           | 1.15   | 1.18    | 1.15           | 1.21           | 1.18     | 1.10         | 1.12     | 1.12     | 1.13   | 1.08           |
| Na <sub>2</sub> O/K <sub>2</sub> O | 0.94           | 0.95          | 0.78           | 0.61   | 0.59    | 0.68           | 0.43           | 0.91     | 0.57         | 0.78     | 0.83     | 0.51   | 0.56           |
| Na <sub>2</sub> O/CaO              | 6.04           | 6.12          | 6.28           | 5.30   | 6.07    | 3.85           | 2.40           | 3.43     | 6.08         | 4.21     | 5.81     | 5.63   | 5.42           |
| MgO/FeOT                           | 0.14           | 0.19          | 0.15           | 0.21   | 0.29    | 0.27           | 0.22           | 0.26     | 0.02         | 0.08     | 0.11     | 0.09   | 0.11           |
| MgO/MnO                            | 2.25           | 8.00          | 5.50           | 10.50  | 16.00   | 15.00          | 11.00          | 7.29     | 3.00         | 2.00     | 4.00     | 4.00   | 4.00           |
| Mg#                                | 20.3           | 24.9          | 21.2           | 27.2   | 33.7    | 32.7           | 28.6           | 31.4     | 3.7          | 12.4     | 16.3     | 13.9   | 16.2           |
| Trace elem                         | ents (pp       | m)            |                |        |         |                |                |          |              |          |          |        |                |
| La                                 | 7.77           | 4.48          | 10.65          | 79.94  | 23.02   | 25.92          | 13.68          | 57.05    | 37.25        | 92.42    | 50.38    | 157.91 | 150.47         |
| Ce                                 | 14.91          | 9.40          | 26.88          | 135.40 | 41.88   | 45.79          | 24.10          | 116.88   | 106.45       | 175.99   | 124.87   | 277.01 | 329.35         |
| Pr                                 | 1.78           | 1.14          | 2.41           | 14.02  | 4.59    | 6.32           | 2.43           | 12.88    | 8.07         | 16.52    | 11.89    | 24.46  | 29.50          |
| Nd                                 | 6.64           | 4.19          | 9.19           | 50.14  | 15.87   | 20.36          | 9.31           | 50.88    | 29.62        | 60.01    | 45.58    | 78.32  | 106.64         |
| Sm                                 | 1.28           | 0.73          | 1.99           | 7.14   | 2.95    | 3.01           | 1.88           | 9.89     | 5.73         | 9.06     | 8.97     | 9.81   | 15.59          |
| Eu                                 | 0.24           | 0.19          | 0.41           | 1.44   | 0.99    | 1.16           | 0.99           | 1.42     | 0.19         | 0.57     | 1.09     | 1.34   | 1.03           |
| Gd                                 | 1.09           | 0.57          | 2.06           | 5.39   | 2.08    | 2.11           | 1.89           | 8.38     | 4.56         | 7.42     | 7.15     | 7.57   | 11.20          |
| Tb                                 | 0.17           | 0.08          | 0.43           | 0.73   | 0.27    | 0.23           | 0.26           | 1.30     | 0.72         | 0.96     | 1.03     | 0.85   | 1.24           |
| Dy                                 | 0.97           | 0.44          | 2.44           | 3.51   | 1.12    | 0.93           | 1.32           | 6.90     | 3.99         | 4.45     | 4.97     | 2.89   | 4.58           |
| Но                                 | 0.18           | 0.08          | 0.44           | 0.62   | 0.20    | 0.17           | 0.26           | 1.36     | 0.84         | 0.89     | 0.83     | 0.54   | 0.82           |
| Er                                 | 0.55           | 0.25          | 1.08           | 1.70   | 0.52    | 0.47           | 0.84           | 3.83     | 2.63         | 2.67     | 2.23     | 1.70   | 2.60           |
| Tm                                 | 0.08           | 0.04          | 0.14           | 0.23   | 0.08    | 0.07           | 0.12           | 0.53     | 0.43         | 0.37     | 0.30     | 0.23   | 0.36           |
| Yb                                 | 0.58           | 0.30          | 0.79           | 1.52   | 0.51    | 0.42           | 0.96           | 3.25     | 3.15         | 2.60     | 1.92     | 1.58   | 2.69           |
| Lu                                 | 0.08           | 0.05          | 0.10           | 0.23   | 0.07    | 0.06           | 0.17           | 0.45     | 0.45         | 0.42     | 0.28     | 0.24   | 0.47           |
| ∑REE                               | 36.31          | 21.94         | 58.99          | 301.99 | 94.15   | 107.02         | 58.21          | 275.00   | 204.10       | 374.35   | 261.49   | 564.44 | 656.54         |
| $La_N/Yb_N$                        | 9.05           | 10.09         | 9.11           | 35.54  | 30.50   | 41.70          | 9.68           | 11.86    | 7.99         | 24.03    | 17.71    | 67.75  | 37.78          |
| Eu <sub>N</sub> /Eu <sub>N</sub> * | 0.62           | 0.90          | 0.62           | 0.71   | 1.22    | 1.41           | 1.60           | 0.48     | 0.11         | 0.21     | 0.42     | 0.47   | 0.24           |
| Li                                 | 17.48          | 13.81         | 3.60           | 4.72   | 21.26   | 34.99          | n.a.           | n.a.     | n.a.         | n.a.     | n.a.     | n.a.   | n.a.           |
| Be                                 | 3.02           | 1.95          | 1.86           | 0.58   | 0.89    | 0.90           | n.a.           | n.a.     | n.a.         | n.a.     | n.a.     | n.a.   | n.a.           |
| Sc                                 | 1.40           | 0.93          | 1.87           | 1.39   | 1.29    | 1.45           | 1.91           | 3.50     | 2.66         | 10.11    | 2.99     | 3.72   | 10.49          |
| Co                                 | 0.26           | 0.09          | 0.61           | 0.62   | 1.17    | 1.20           | 1.62           | 1.93     | 0.74         | 1.07     | 1.19     | 0.39   | 0.31           |
| Cu                                 | 0.94           | 1.63          | 1.56           | 2.57   | 2.02    | 2.09           | 2.95           | 2.16     | 3.97         | 2.91     | 2.70     | 2.38   | 2.84           |
| Ga                                 | 16.41          | 15.88         | 16.23          | 12.33  | 21.34   | 22.99          | 17.41          | 17.52    | 20.23        | 19.45    | 17.84    | 14.32  | 18.74          |
| Rb                                 | 185.51         | 118.59        | 147.66         | 69.66  | 76.87   | 77.45          | 147.45         | 100.80   | 122.32       | 82.54    | 99.80    | 81.08  | 69.06          |
| Sr                                 | 43.70          | 33.70         | 155.40         | 230.20 | 212.45  | 263.14         | 269.12         | 187.70   | 33.90        | 80.46    | 113.31   | 73.09  | 10.58          |
| Ŷ                                  | 5.24           | 2.22          | 9.74           | 14.29  | 13.48   | 10.16          | 6.89           | 31.74    | 21.65        | 20.74    | 16.60    | 12.83  | 18.51          |
| Zr                                 | /1.15          | 29.73         | 82.99          | 4/5.81 | 6/.12   | /1.81          | 1/6.89         | 230.98   | 241.95       | 365.84   | 255.76   | 230.14 | 835./5         |
| Nb                                 | 16.08          | 8.66          | 13.95          | 10.19  | 9.72    | 12.93          | 10.97          | 22.99    | 10.51        | 14.01    | 21.39    | 12./1  | 13.32          |
| ы                                  | 152.70         | 45.40         | 440.60         | 94/.80 | 030.3   | 940.09         | 900.70         | 152.92   | 102.72       | 300.59   | 720.94   | 5/1.40 | 38.90          |
| HI<br>To                           | 4.40           | 2.02          | 4.14           | 13.90  | 1.39    | 1.0/           | 0.38           | 1.50     | 0.72<br>1.24 | 9.1/     | 1.09     | 0.57   | 10.33          |
| 1a<br>DL                           | 1.22           | 0.04          | 1.39           | 1.08   | 0.48    | 0.4/           | 0.09           | 1.00     | 1.30         | 0.82     | 1.33     | 0.38   | 0.38           |
| ዮሀ<br>ፕኤ                           | 23.13<br>10.92 | 23.28<br>7.62 | 27.33<br>16.10 | 10.01  | 2 50    | ∠1.2ð<br>3.60  | ∠4.48<br>10.45 | 13.34    | 21.32        | 12.20    | 10.78    | 14.13  | 21.90<br>17.51 |
| 111                                | 10.62          | 1.05          | 2 27           | 0.09   | 0.82    | 0.09           | 1 10.45        | 17.90    | 20.30        | 1 1 2    | 0.73     | 15./1  | 1 25           |
| Rh/Sr                              | 4 245          | 3 510         | 0.050          | 0 303  | 0.62    | 0.90           | 0.548          | 0.537    | 3 608        | 1.12     | 0.75     | 1 100  | 6 5 2 6        |
| Rh/Ra                              | 1 398          | 2.612         | 0.335          | 0.073  | 0.118   | 0.294<br>0.082 | 0 153          | 0 134    | 1 1 9 1      | 0 225    | 0 137    | 0.218  | 1 775          |
| Rh/7r                              | 2.607          | 3 989         | 1 779          | 0 146  | 1 1 4 5 | 1 079          | 0.834          | 0 436    | 0 506        | 0.225    | 0 390    | 0 352  | 0.083          |
| Sr/Y                               | 8.34           | 15.15         | 15.96          | 16.11  | 15.76   | 25.90          | 39.04          | 5.91     | 1.57         | 3.88     | 6.83     | 5.70   | 0.57           |

Table DR6 Major and trace element compositions of the Late Permian-Middle Triassic granitoids

Note: GLS–Guanglingshan pluton; HJD–Hanjiadian pluton; JP–Jianping granite pluton; n.a., not analyzed. Others are same as Table DR5.

| $f_{Lu/Hf}$                           |                | -0.96    | -0.96    | -0.96    | -0.98    | -0.97    | -0.97    | -0.95    | -0.94    | -0.96    | -0.96    | -0.96    | -0.96    | -0.99    | -0.98    | -0.97    | -0.96    | -0.96    | -0.96    | -0.94    | -0.97    | -0.92    | 90.0     |
|---------------------------------------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| $\mathrm{Hf}_{\mathrm{i}}$            |                | 0.282106 | 0.282099 | 0.282152 | 0.281640 | 0.282080 | 0.282133 | 0.282071 | 0.282112 | 0.282171 | 0.281562 | 0.282131 | 0.282100 | 0.281668 | 0.281988 | 0.282169 | 0.282150 | 0.282191 | 0.282148 | 0.281705 | 0.282156 | 0.282203 | 7211010  |
| $T_{DM}^{C}$ (Ma)                     |                | 2382     | 2391     | 2281     | 2462     | 2440     | 2322     | 2462     | 2369     | 2240     | 2627     | 2325     | 2395     | 2417     | 2635     | 2239     | 2287     | 2193     | 2290     | 2332     | 2269     | 2163     | 1771     |
| $T_{DM}$ (Ma)                         |                | 1619     | 1629     | 1550     | 2208     | 1644     | 1574     | 1685     | 1633     | 1527     | 2324     | 1584     | 1632     | 2168     | 1762     | 1518     | 1554     | 1499     | 1560     | 2131     | 1541     | 1525     | 1557     |
| $\epsilon_{\rm Hf}(T)$                |                | -16.8    | -16.8    | -15.2    | 0.7      | -17.8    | -15.8    | -18.2    | -16.6    | -14.5    | -1.7     | -15.9    | -17.0    | 1.1      | -20.7    | -14.4    | -15.3    | -13.7    | -15.3    | 2.4      | -14.9    | -13.2    | 15.0     |
| $\epsilon_{\rm Hf}(0)$                |                | -23.3    | -23.5    | -21.7    | -39.3    | -24.3    | -22.4    | -24.4    | -23.0    | -21.0    | -41.1    | -22.4    | -23.5    | -38.7    | -27.6    | -21.2    | -21.8    | -20.3    | -21.8    | -35.5    | -21.6    | -19.6    | A 1 C    |
| $\pm 2\sigma$                         |                | 0.000024 | 0.000018 | 0.000022 | 0.000018 | 0.000021 | 0.000017 | 0.000024 | 0.000019 | 0.000020 | 0.000019 | 0.000018 | 0.000025 | 0.000021 | 0.000019 | 0.000019 | 0.000026 | 0.000024 | 0.000021 | 0.000020 | 0.000019 | 0.000024 |          |
| $^{176}{\rm Hf}/^{177}{\rm Hf}$       |                | 0.282114 | 0.282107 | 0.282159 | 0.281662 | 0.282086 | 0.282139 | 0.282081 | 0.282123 | 0.282178 | 0.281609 | 0.282139 | 0.282108 | 0.281679 | 0.281993 | 0.282174 | 0.282157 | 0.282198 | 0.282156 | 0.281769 | 0.282162 | 0.282219 | 121000   |
| $^{176}\mathrm{Lu}/^{177}\mathrm{Hf}$ |                | 0.001345 | 0.001338 | 0.001202 | 0.000628 | 0.001014 | 0.001110 | 0.001788 | 0.001962 | 0.001295 | 0.001352 | 0.001338 | 0.001448 | 0.000325 | 0.000771 | 0.000921 | 0.001230 | 0.001282 | 0.001338 | 0.001879 | 0.001082 | 0.002656 | 0.001730 |
| $^{176}\mathrm{Yb}/^{177}\mathrm{Hf}$ | (SD020-3)      | 0.045879 | 0.044427 | 0.039275 | 0.026459 | 0.026770 | 0.035469 | 0.061877 | 0.068632 | 0.044336 | 0.054024 | 0.039953 | 0.047192 | 0.014005 | 0.022210 | 0.029278 | 0.040078 | 0.039043 | 0.042756 | 0.056934 | 0.028356 | 0.064515 | 0.025171 |
| Age (Ma)                              | quartz diorite | 306      | 319      | 307      | 1827     | 305      | 311      | 303      | 308      | 307      | 1846     | 310      | 310      | 1801     | 318      | 316      | 305      | 311      | 306      | 1803     | 313      | 315      | 211      |
| Spots                                 | Longhua q      | 01       | 02       | 03       | 04       | 05       | 90       | 07       | 08       | 60       | 10       | 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20       | 21       | ſ        |

Table DR7 Hf isotope results of zircons from the Late Paleozoic-Early Mesozoic intrusions

DR2008141

| Spots    | Age (Ma)      | $^{176}Yb/^{177}Hf$ | $^{176}\mathrm{Lu}/^{177}\mathrm{Hf}$ | $^{176}{\rm Hf}/^{177}{\rm Hf}$ | ±2σ      | $\epsilon_{\rm Hf}(0)$ | $\epsilon_{\rm Hf}(T)$ | T <sub>DM</sub> (Ma) | T <sub>DM</sub> <sup>C</sup> (Ma) | $\mathrm{Hf}_{\mathrm{i}}$ | $f_{Lu/Hf}$ |
|----------|---------------|---------------------|---------------------------------------|---------------------------------|----------|------------------------|------------------------|----------------------|-----------------------------------|----------------------------|-------------|
| Boluonuo | quartz diorit | te (HLB-G)          |                                       |                                 |          |                        |                        |                      |                                   |                            |             |
| 01       | 320           | 0.032241            | 0.001418                              | 0.281989                        | 0.000016 | -27.7                  | -21.0                  | 1798                 | 2651                              | 0.281981                   | -0.96       |
| 02       | 310           | 0.023226            | 0.001016                              | 0.281980                        | 0.000015 | -28.0                  | -21.4                  | 1791                 | 2671                              | 0.281974                   | -0.97       |
| 03       | 312           | 0.039741            | 0.001739                              | 0.281982                        | 0.000016 | -27.9                  | -21.5                  | 1823                 | 2674                              | 0.281972                   | -0.95       |
| 04       | 300           | 0.026238            | 0.001040                              | 0.282016                        | 0.000017 | -26.7                  | -20.4                  | 1742                 | 2597                              | 0.282010                   | -0.97       |
| 05       | 303           | 0.032530            | 0.001301                              | 0.281950                        | 0.000018 | -29.1                  | -22.7                  | 1847                 | 2744                              | 0.281943                   | -0.96       |
| 90       | 295           | 0.040275            | 0.001726                              | 0.282014                        | 0.000015 | -26.8                  | -20.7                  | 1777                 | 2613                              | 0.282004                   | -0.95       |
| 07       | 307           | 0.019270            | 0.000830                              | 0.281567                        | 0.000020 | -42.6                  | -36.1                  | 2350                 | 3568                              | 0.281562                   | -0.98       |
| 08       | 302           | 0.039519            | 0.001677                              | 0.281977                        | 0.000017 | -28.1                  | -21.8                  | 1827                 | 2690                              | 0.281968                   | -0.95       |
| 60       | 301           | 0.037080            | 0.001625                              | 0.281977                        | 0.000017 | -28.1                  | -21.8                  | 1825                 | 2690                              | 0.281968                   | -0.95       |
| 10       | 301           | 0.043812            | 0.001921                              | 0.282014                        | 0.000017 | -26.8                  | -20.6                  | 1787                 | 2612                              | 0.282003                   | -0.94       |
| 11       | 302           | 0.034961            | 0.001522                              | 0.282013                        | 0.000016 | -26.8                  | -20.5                  | 1769                 | 2609                              | 0.282004                   | -0.95       |
| 12       | 288           | 0.035960            | 0.001577                              | 0.282006                        | 0.000015 | -27.1                  | -21.1                  | 1781                 | 2632                              | 0.281998                   | -0.95       |
| 13       | 2363          | 0.016485            | 0.000644                              | 0.281344                        | 0.000018 | -50.5                  | 1.4                    | 2641                 | 2830                              | 0.281315                   | -0.98       |
| 14       | 295           | 0.026555            | 0.001124                              | 0.281861                        | 0.000016 | -32.2                  | -26.0                  | 1962                 | 2940                              | 0.281855                   | -0.97       |
| 15       | 300           | 0.033695            | 0.001436                              | 0.281953                        | 0.000017 | -29.0                  | -22.7                  | 1849                 | 2740                              | 0.281945                   | -0.96       |
| 16       | 302           | 0.021696            | 0.000861                              | 0.281506                        | 0.000019 | -44.8                  | -38.3                  | 2435                 | 3702                              | 0.281501                   | -0.97       |
| 17       | 298           | 0.047729            | 0.002041                              | 0.281995                        | 0.000017 | -27.5                  | -21.4                  | 1820                 | 2657                              | 0.281984                   | -0.94       |
| 18       | 2380          | 0.013061            | 0.000535                              | 0.281378                        | 0.000019 | -49.3                  | 3.2                    | 2587                 | 2730                              | 0.281354                   | -0.98       |
| 19       | 302           | 0.043099            | 0.001825                              | 0.281963                        | 0.000017 | -28.6                  | -22.4                  | 1854                 | 2722                              | 0.281953                   | -0.95       |
| 20       | 302           | 0.016716            | 0.000720                              | 0.281732                        | 0.000018 | -36.8                  | -30.3                  | 2118                 | 3212                              | 0.281728                   | -0.98       |
| 21       | 302           | 0 040989            | 0 001779                              | 0.282005                        | 0 000016 | - 2.7 1                | -20.9                  | 1793                 | 2630                              | 0.281995                   | -0.95       |

Table DR7 (continued)

|              | $f_{Lu/Hf}$                           |                | -0.96    | -0.96    | -0.96    | -0.95    | -0.96    | -0.93    | -0.96    | -0.97    | -0.94    | -0.97    | -0.97    | -0.98    | -0.97    | -0.97    | -0.96    | -0.96    | -0.98    | -0.93    | -0.97    | -0.99    | -0.99    | -0.99    |
|--------------|---------------------------------------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|              | $\mathrm{Hf}_{\mathrm{i}}$            |                | 0.282428 | 0.282461 | 0.282515 | 0.282616 | 0.282498 | 0.282388 | 0.282538 | 0.281911 | 0.282452 | 0.281967 | 0.282270 | 0.282424 | 0.281410 | 0.282327 | 0.282375 | 0.282273 | 0.281513 | 0.282260 | 0.281345 | 0.281253 | 0.281566 | 0.281332 |
|              | T <sub>DM</sub> <sup>C</sup> (Ma)     |                | 1662     | 1584     | 1463     | 1247     | 1505     | 1739     | 1403     | 2786     | 1608     | 2672     | 2019     | 1664     | 2509     | 1885     | 1773     | 1990     | 2273     | 2031     | 2659     | 2868     | 2150     | 2687     |
|              | T <sub>DM</sub> (Ma)                  |                | 1168     | 1118     | 1043     | 902      | 1069     | 1244     | 1009     | 1875     | 1142     | 1803     | 1381     | 1159     | 2509     | 1302     | 1238     | 1382     | 2370     | 1428     | 2599     | 2720     | 2299     | 2615     |
|              | $\epsilon_{\rm Hf}(T)$                |                | -5.2     | -3.9     | -2.0     | 1.2      | -2.7     | -6.2     | -0.9     | -22.8    | -4.4     | -21.2    | -11.0    | -5.1     | 8.2      | -8.7     | -6.8     | -10.1    | 11.8     | -11.0    | 5.8      | 2.6      | 13.7     | 5.4      |
|              | $\epsilon_{\rm Hf}(0)$                |                | -11.9    | -10.7    | -8.8     | -5.2     | -9.4     | -13.1    | -8.0     | -30.2    | -10.9    | -28.2    | -17.5    | -12.1    | -46.3    | -15.5    | -13.8    | -17.4    | -43.3    | -17.6    | -48.9    | -53.2    | -42.0    | -50.1    |
|              | ±2σ                                   |                | 0.000017 | 0.000039 | 0.000015 | 0.000049 | 0.000025 | 0.000017 | 0.000016 | 0.000018 | 0.000022 | 0.000021 | 0.000017 | 0.000017 | 0.000023 | 0.000019 | 0.000018 | 0.000016 | 0.000018 | 0.000023 | 0.000021 | 0.000022 | 0.000028 | 0.000022 |
|              | $^{176}{\rm Hf}/^{177}{\rm Hf}$       |                | 0.282437 | 0.282469 | 0.282524 | 0.282625 | 0.282507 | 0.282403 | 0.282547 | 0.281917 | 0.282463 | 0.281974 | 0.282276 | 0.282429 | 0.281463 | 0.282334 | 0.282383 | 0.282281 | 0.281548 | 0.282274 | 0.281389 | 0.281267 | 0.281584 | 0.281356 |
|              | $^{176}$ Lu/ $^{177}$ Hf              | (              | 0.001477 | 0.001337 | 0.001432 | 0.001548 | 0.001490 | 0.002327 | 0.001404 | 0.000936 | 0.001838 | 0.001095 | 0.001057 | 0.000826 | 0.001104 | 0.001138 | 0.001289 | 0.001291 | 0.000733 | 0.002238 | 0.000925 | 0.000297 | 0.000374 | 0.000498 |
|              | $^{176}\mathrm{Yb}/^{177}\mathrm{Hf}$ | orite (D018-1  | 0.034152 | 0.033520 | 0.034726 | 0.039910 | 0.032538 | 0.058114 | 0.033019 | 0.023986 | 0.044046 | 0.026335 | 0.027110 | 0.020363 | 0.029344 | 0.030359 | 0.033887 | 0.036213 | 0.020461 | 0.066780 | 0.025362 | 0.009389 | 0.013875 | 0.016343 |
| ontinued)    | Age (Ma)                              | ling quartz di | 316      | 324      | 322      | 306      | 316      | 335      | 337      | 351      | 317      | 333      | 308      | 329      | 2510     | 319      | 328      | 346      | 2510     | 324      | 2510     | 2510     | 2510     | 2510     |
| Table DR7 (c | Spots                                 | Daguango       | 01       | 02       | 03       | 04       | 05       | 90       | 07       | 08       | 60       | 10       | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       |

DR2008141

| Table DR7 (c | continued)     |                                                 |                     |                                      |          |                        |                        |                      |                                   |                            |                      |
|--------------|----------------|-------------------------------------------------|---------------------|--------------------------------------|----------|------------------------|------------------------|----------------------|-----------------------------------|----------------------------|----------------------|
| Spots        | Age (Ma)       | $\mathrm{H}^{176}\mathrm{Yb}/^{177}\mathrm{Hf}$ | $^{176}Lu/^{177}Hf$ | <sup>176</sup> Hf/ <sup>177</sup> Hf | ±2σ      | $\epsilon_{\rm Hf}(0)$ | $\epsilon_{\rm Hf}(T)$ | T <sub>DM</sub> (Ma) | T <sub>DM</sub> <sup>C</sup> (Ma) | $\mathrm{Hf}_{\mathrm{i}}$ | $f_{L \omega / H f}$ |
| Daguange     | ding quartz di | iorite (D169-2                                  | (;                  |                                      |          |                        |                        |                      |                                   |                            |                      |
| 01           | 282            | 0.016308                                        | 0.000715            | 0.282415                             | 0.000014 | -12.6                  | -6.6                   | 1175                 | 1720                              | 0.282411                   | -0.98                |
| 02           | 290            | 0.009325                                        | 0.000440            | 0.282452                             | 0.000017 | -11.3                  | -5.0                   | 1115                 | 1630                              | 0.282450                   | -0.99                |
| 03           | 309            | 0.018393                                        | 0.000824            | 0.282464                             | 0.000015 | -10.9                  | -4.3                   | 1110                 | 1597                              | 0.282459                   | -0.98                |
| 04           | 311            | 0.014186                                        | 0.000650            | 0.282491                             | 0.000017 | -9.9                   | -3.2                   | 1067                 | 1533                              | 0.282487                   | -0.98                |
| 05           | 315            | 0.012497                                        | 0.000564            | 0.282147                             | 0.000023 | -22.1                  | -15.3                  | 1541                 | 2295                              | 0.282144                   | -0.98                |
| 90           | 338            | 0.019179                                        | 0.000833            | 0.282447                             | 0.000014 | -11.5                  | -4.3                   | 1134                 | 1618                              | 0.282442                   | -0.97                |
| 07           | 333            | 0.013120                                        | 0.000573            | 0.282453                             | 0.000015 | -11.3                  | -4.1                   | 1118                 | 1604                              | 0.282449                   | -0.98                |
| 08           | 302            | 0.026260                                        | 0.001174            | 0.282405                             | 0.000014 | -13.0                  | -6.6                   | 1203                 | 1737                              | 0.282398                   | -0.96                |
| 60           | 306            | 0.014485                                        | 0.000658            | 0.282433                             | 0.000015 | -12.0                  | -5.4                   | 1148                 | 1666                              | 0.282429                   | -0.98                |
| 10           | 327            | 0.015723                                        | 0.000700            | 0.282424                             | 0.000017 | -12.3                  | -5.3                   | 1162                 | 1674                              | 0.282420                   | -0.98                |
| 11           | 2453           | 0.012317                                        | 0.000530            | 0.281415                             | 0.000015 | -48.0                  | 6.1                    | 2537                 | 2596                              | 0.281390                   | -0.98                |
| 12           | 332            | 0.018018                                        | 0.000834            | 0.282421                             | 0.000013 | -12.4                  | -5.3                   | 1170                 | 1680                              | 0.282416                   | -0.97                |
| 13           | 315            | 0.010265                                        | 0.000484            | 0.282445                             | 0.000014 | -11.6                  | -4.8                   | 1126                 | 1631                              | 0.282442                   | -0.99                |
| 14           | 304            | 0.018084                                        | 0.000795            | 0.282451                             | 0.000013 | -11.4                  | -4.8                   | 1127                 | 1628                              | 0.282446                   | -0.98                |
| 15           | 312            | 0.020797                                        | 0.000893            | 0.282381                             | 0.000017 | -13.8                  | -7.2                   | 1228                 | 1781                              | 0.282376                   | -0.97                |
| 16           | 328            | 0.021602                                        | 0.000999            | 0.282411                             | 0.000014 | -12.8                  | -5.8                   | 1190                 | 1707                              | 0.282405                   | -0.97                |
| 17           | 315            | 0.020223                                        | 0.000890            | 0.282440                             | 0.000015 | -11.7                  | -5.0                   | 1146                 | 1648                              | 0.282435                   | -0.97                |
| 18           | 292            | 0.012635                                        | 0.000596            | 0.282437                             | 0.000017 | -11.8                  | -5.6                   | 1141                 | 1664                              | 0.282434                   | -0.98                |
| 19           | 311            | 0.010951                                        | 0.000500            | 0.282427                             | 0.000014 | -12.2                  | -5.5                   | 1152                 | 1674                              | 0.282424                   | -0.98                |
| 20           | 314            | 0.030199                                        | 0.001339            | 0.282426                             | 0.000017 | -12.2                  | -5.6                   | 1179                 | 1686                              | 0.282418                   | -0.96                |
| 21           | 314            | 0.018479                                        | 0.000769            | 0.282415                             | 0.000013 | -12.6                  | -5.9                   | 1177                 | 1703                              | 0.282410                   | -0.98                |

| Spots     | Age (Ma)       | $^{176}\mathrm{Yb}/^{177}\mathrm{Hf}$ | $^{176}\mathrm{Lu}/^{177}\mathrm{Hf}$ | $^{176}$ Hf/ $^{177}$ Hf | ±2σ      | $\epsilon_{\rm Hf}(0)$ | $\epsilon_{\rm Hf}(T)$ | T <sub>DM</sub> (Ma) | T <sub>DM</sub> <sup>C</sup> (Ma) | $Hf_i$   | $f_{\mathrm{L}u/\mathrm{Hf}}$ |
|-----------|----------------|---------------------------------------|---------------------------------------|--------------------------|----------|------------------------|------------------------|----------------------|-----------------------------------|----------|-------------------------------|
| Hushiha £ | granodiorite ( | FP2)                                  |                                       |                          |          |                        |                        |                      |                                   |          |                               |
| 01        | 292            | 0.077901                              | 0.003005                              | 0.282228                 | 0.000016 | -19.2                  | -13.4                  | 1526                 | 2158                              | 0.282212 | -0.91                         |
| 02        | 305            | 0.093178                              | 0.003298                              | 0.282223                 | 0.000018 | -19.4                  | -13.4                  | 1546                 | 2167                              | 0.282204 | -0.90                         |
| 03        | 323            | 0.093041                              | 0.003211                              | 0.282233                 | 0.000018 | -19.1                  | -12.7                  | 1528                 | 2135                              | 0.282214 | -0.90                         |
| 04        | 302            | 0.089961                              | 0.003277                              | 0.282173                 | 0.000022 | -21.2                  | -15.2                  | 1619                 | 2278                              | 0.282154 | -0.90                         |
| 05        | 300            | 0.093806                              | 0.003119                              | 0.282213                 | 0.000024 | -19.8                  | -13.8                  | 1553                 | 2189                              | 0.282196 | -0.91                         |
| 90        | 317            | 0.091126                              | 0.003139                              | 0.282184                 | 0.000018 | -20.8                  | -14.5                  | 1597                 | 2245                              | 0.282165 | -0.91                         |
| 07        | 305            | 0.091691                              | 0.003176                              | 0.282244                 | 0.000019 | -18.7                  | -12.6                  | 1510                 | 2119                              | 0.282226 | -0.90                         |
| 08        | 313            | 0.098044                              | 0.003369                              | 0.282193                 | 0.000026 | -20.5                  | -14.3                  | 1594                 | 2230                              | 0.282173 | -0.90                         |
| 60        | 305            | 0.084438                              | 0.003106                              | 0.282247                 | 0.000023 | -18.6                  | -12.5                  | 1503                 | 2111                              | 0.282229 | -0.91                         |
| 10        | 307            | 0.075185                              | 0.002871                              | 0.282261                 | 0.000021 | -18.1                  | -11.9                  | 1472                 | 2076                              | 0.282245 | -0.91                         |
| 11        | 305            | 0.087669                              | 0.003104                              | 0.282177                 | 0.000016 | -21.0                  | -15.0                  | 1606                 | 2266                              | 0.282159 | -0.91                         |
| 12        | 301            | 0.099814                              | 0.003679                              | 0.282246                 | 0.000018 | -18.6                  | -12.7                  | 1528                 | 2122                              | 0.282225 | -0.89                         |
| 13        | 308            | 0.060402                              | 0.002240                              | 0.282224                 | 0.000018 | -19.4                  | -13.1                  | 1500                 | 2150                              | 0.282211 | -0.93                         |
| 14        | 297            | 0.077488                              | 0.002879                              | 0.282247                 | 0.000016 | -18.6                  | -12.6                  | 1493                 | 2112                              | 0.282231 | -0.91                         |
| 15        | 300            | 0.090876                              | 0.003482                              | 0.282280                 | 0.000019 | -17.4                  | -11.5                  | 1469                 | 2045                              | 0.282260 | -0.90                         |
| 16        | 2500           | 0.001236                              | 0.000045                              | 0.281417                 | 0.000015 | -47.9                  | 8.1                    | 2503                 | 2505                              | 0.281415 | -1.00                         |
| 17        | 311            | 0.068124                              | 0.002422                              | 0.282276                 | 0.000018 | -17.5                  | -11.2                  | 1432                 | 2035                              | 0.282262 | -0.93                         |
| 18        | 300            | 0.095104                              | 0.003482                              | 0.282251                 | 0.000019 | -18.4                  | -12.5                  | 1513                 | 2109                              | 0.282231 | -0.90                         |
| 19        | 297            | 0.078265                              | 0.002905                              | 0.282244                 | 0.000019 | -18.7                  | -12.7                  | 1499                 | 2119                              | 0.282228 | -0.91                         |
| 20        | 310            | 0.063778                              | 0.002538                              | 0.282245                 | 0.000018 | -18.6                  | -12.4                  | 1482                 | 2106                              | 0.282230 | -0.92                         |
| Guanglin  | gshan monzo    | granite (HFG-2                        | 2)                                    |                          |          |                        |                        |                      |                                   |          |                               |
| 01        | 251            | 0.046631                              | 0.001638                              | 0.282315                 | 0.000022 | -16.2                  | -10.9                  | 1347                 | 1970                              | 0.282307 | -0.95                         |
| 02        | 253            | 0 028469                              | 0.000980                              | 0 282316                 |          | 16.1                   | 10.7                   | 1277                 | 1060                              | 0 282211 | 0.07                          |

| Table DR7 (c               | ontinued)               |                                                 |                                 |                                                   |                                                        |                                          |                                            |                                         |                     |                            |                            |
|----------------------------|-------------------------|-------------------------------------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------|---------------------|----------------------------|----------------------------|
| Spots                      | Age (Ma)                | $\mathrm{H}^{176}\mathrm{Yb}/^{177}\mathrm{Hf}$ | $^{176}Lu/^{177}Hf$             | $^{176}{\rm Hf}/^{177}{\rm Hf}$                   | ±2σ                                                    | $\epsilon_{\rm Hf}(0)$                   | $\epsilon_{\rm Hf}(T)$                     | T <sub>DM</sub> (Ma)                    | $T_{DM}{}^{C}$ (Ma) | $\mathrm{Hf}_{\mathrm{i}}$ | $f_{\mathrm{Lu/Hf}}$       |
| Guangling                  | şshan monzo             | granite (HFG-                                   | -2)                             |                                                   |                                                        |                                          |                                            |                                         |                     |                            |                            |
| 03                         | 255                     | 0.040762                                        | 0.001433                        | 0.282371                                          | 0.000022                                               | -14.2                                    | -8.8                                       | 1260                                    | 1842                | 0.282364                   | -0.96                      |
| 04                         | 253                     | 0.030479                                        | 0.001088                        | 0.282312                                          | 0.000020                                               | -16.3                                    | -10.9                                      | 1331                                    | 1970                | 0.282307                   | -0.97                      |
| 05                         | 242                     | 0.042782                                        | 0.001376                        | 0.282304                                          | 0.000018                                               | -16.6                                    | -11.5                                      | 1353                                    | 1997                | 0.282298                   | -0.96                      |
| 90                         | 258                     | 0.033812                                        | 0.001123                        | 0.282318                                          | 0.000023                                               | -16.1                                    | -10.6                                      | 1324                                    | 1954                | 0.282313                   | -0.97                      |
| 07                         | 259                     | 0.025006                                        | 0.000825                        | 0.282312                                          | 0.000021                                               | -16.3                                    | -10.7                                      | 1322                                    | 1964                | 0.282308                   | -0.98                      |
| 08                         | 262                     | 0.045717                                        | 0.001393                        | 0.282315                                          | 0.000024                                               | -16.2                                    | -10.7                                      | 1338                                    | 1962                | 0.282308                   | -0.96                      |
| 60                         | 253                     | 0.060377                                        | 0.001831                        | 0.282264                                          | 0.000023                                               | -18.0                                    | -12.7                                      | 1427                                    | 2084                | 0.282255                   | -0.94                      |
| 10                         | 253                     | 0.029026                                        | 0.000840                        | 0.282378                                          | 0.000024                                               | -13.9                                    | -8.5                                       | 1231                                    | 1821                | 0.282374                   | -0.97                      |
| 11                         | 252                     | 0.030355                                        | 0.000997                        | 0.282363                                          | 0.000019                                               | -14.5                                    | -9.1                                       | 1257                                    | 1857                | 0.282358                   | -0.97                      |
| 12                         | 241                     | 0.056116                                        | 0.001624                        | 0.282329                                          | 0.000025                                               | -15.7                                    | -10.6                                      | 1326                                    | 1944                | 0.282322                   | -0.95                      |
| 13                         | 256                     | 0.044708                                        | 0.001084                        | 0.282315                                          | 0.000028                                               | -16.2                                    | -10.7                                      | 1327                                    | 1962                | 0.282310                   | -0.97                      |
| 14                         | 262                     | 0.036056                                        | 0.001010                        | 0.282270                                          | 0.000027                                               | -17.8                                    | -12.2                                      | 1387                                    | 2058                | 0.282265                   | -0.97                      |
| 15                         | 273                     | 0.052121                                        | 0.001212                        | 0.282328                                          | 0.000033                                               | -15.7                                    | -9.9                                       | 1313                                    | 1925                | 0.282322                   | -0.96                      |
| 16                         | 252                     | 0.061308                                        | 0.001423                        | 0.282221                                          | 0.000030                                               | -19.5                                    | -14.2                                      | 1472                                    | 2176                | 0.282214                   | -0.96                      |
| 17                         | 248                     | 0.101562                                        | 0.002391                        | 0.282207                                          | 0.000029                                               | -20.0                                    | -14.9                                      | 1531                                    | 2219                | 0.282196                   | -0.93                      |
| 18                         | 253                     | 0.113471                                        | 0.002683                        | 0.282317                                          | 0.000032                                               | -16.1                                    | -11.0                                      | 1383                                    | 1976                | 0.282304                   | -0.92                      |
| 19                         | 253                     | 0.054429                                        | 0.001238                        | 0.282433                                          | 0.000028                                               | -12.0                                    | -6.7                                       | 1166                                    | 1703                | 0.282427                   | -0.96                      |
| 20                         | 253                     | 0.123006                                        | 0.002706                        | 0.282239                                          | 0.000029                                               | -18.8                                    | -13.8                                      | 1498                                    | 2149                | 0.282226                   | -0.92                      |
| <sup>176</sup> Lu decay c  | onstant $\lambda = 1$ . | 865×10 <sup>-11</sup> yr <sup>-1</sup>          | Chondritic v                    | 'alues: <sup>176</sup> Lu/ <sup>17</sup>          | <sup>77</sup> Hf=0.0332±0                              | 0.0002, <sup>176</sup> Hf                | / <sup>177</sup> Hf=0.282                  | 772±0.000029                            | ); depleted mar     | ttle values: $(^{12}$      | $^{76}Lu/^{177}Hf)_{DM} =$ |
| 0.0384, ( <sup>176</sup> H | $f^{/177}Hf)_{DM}=0$    | ).28325; Hf <sub>i</sub> : in                   | nitial Hf isotol                | pe compositio                                     | n for U-Pb age                                         | e; the <sup>176</sup> Hf/ <sup>17</sup>  | <sup>7</sup> Hf ratios rel                 | ported were cc                          | prrected accord     | ling to the rec            | ommended                   |
| value of the s             | tandard zirco           | on 91500. T <sub>DM</sub>                       | $f=1/\lambda \times \ln \{1+[($ | $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}\mathrm{san}$ | <sub>aple</sub> -( <sup>176</sup> Hf/ <sup>177</sup> E | Hf) <sub>DM</sub> ]/[( <sup>176</sup> Lu | 1/ <sup>177</sup> Hf) <sub>sample</sub> -( | $^{176}$ Lu/ $^{177}$ Hf) <sub>Df</sub> | м]};                |                            |                            |

18

 $T_{DM}^{C} = 1/\lambda \times \ln \{1 + [(^{176}Hf)^{177}Hf)_{sample,t} - (^{176}Hf)^{177}Hf)_{DM,t}]/[(^{176}Lu^{/177}Hf)_{c} - (^{176}Lu^{/177}Hf)_{DM}]\} + t; \\ (^{176}Lu^{/177}Hf)_{c} = 0.015; \\ t = crystallization time of zircon.$ 



Figure DR1 Representative outcrop and photomicrographs of the Late Paleozoic-Early Mesozoic intrusions

(a) Field photograph of quartz diorite in the western Longhua pluton near Shangyingzi vallage showing a NE trending steep foliation, view to NE; (b) Photomicrograph of the Longhua quartz diorite (Sample SD020-3), cross polarized light; (c) Field photograph of quartz diorite in the

western Daguangding pluton, showing an east-west trending foliation, view to southwest; (d) Field photograph of quartz diorite from the western Boluonuo pluton, showing a very weak foliation, view to northeast; (e) Field photograph of mylonitic monzogranite from the southern Guanglingshan intrusion, showing strong deformation of quartz, view to west; (f) Photomicrograph of the mylonitic monzogranite from the southern Guanglingshan intrusion (Sample D138-1), showing recrystalization and strong deformation of quartz grains, cross polarized light; (g) Field photograph of granodiorite from the Jianping diorite pluton showing a very weak foliation; (h) Field photograph of monzogranite from the Jianping granite intrusion. Red lines indicate strike of foliation. For scale of the field photographs, width of the hammer head is ~17 cm and the pencil is ~13 cm long.



Figure DR2 Representative CL images of zircons, with sites of SHRIMP and LA-ICP-MS U-Pb and in-situ Lu-Hf analyses spots from the analyzed samples

(a) Sample D169-2 (Daguangding quartz diorite); (b) Sample HFH-1 (Hushiha granite dyke); (c)
Sample HFG-2 (Guanglingshan monzogranite); (d) Sample D315 (Jianping diorite); (e) D315-1
(Jianping syenogranite dyke); (f) Sample D315-3 (Jianping monzogranite). Small circles in (a), (b),
(c) are SHRIMP U-Pb analysis spots, large dashed circles in (a) and (c) are in-situ Lu-Hf analysis
spots, and small dashed circles in (d), (e), (f) are LA-ICP-MS U-Pb analysis spots.



Figure DR2 (Continued)



Figure DR2 (Continued)



Figure DR3 Classification diagrams for the Late Permian-Middle Triassic granitic rocks

(a) K<sub>2</sub>O+Na<sub>2</sub>O, (b) molecular (K<sub>2</sub>O+Na<sub>2</sub>O)/Al<sub>2</sub>O<sub>3</sub>, (c) Nb, (d) Zr vs. 10000 Ga/Al and (e)
FeOT/MgO, (f) (K<sub>2</sub>O+Na<sub>2</sub>O)/CaO vs. (Zr+Nb+Ce+Y) classification diagrams (Whalen et al., 1987), indicating that the Late Permian-Middle Triassic granites are transitional between the I-, S-, M- and A-types (a–d) or highly fractionated (e–f). A: A-type granite; I, S & M: I-, S-, M-type granite; FG: Fractionated felsic granite; OGT: unfractionated M-, I- and S-type granite. Symbols are same as Fig. 4.



Figure DR4 Adakite discrimination diagrams for the Carboniferous granitic intrusions

(a) MgO vs. SiO<sub>2</sub> diagram from Martin et al. (2005); (b) Sr vs. (CaO+Na<sub>2</sub>O) diagram from Martin et al. (2005); (c) (La/Yb)<sub>N</sub> vs. Yb<sub>N</sub> diagram from Martin (1999), and the chondrite values are from Evensen et al. (1978); (d) Sr/Y vs. Y diagram from Drummond and Defant (1990). Symbols are same as Fig. 4.

## REFERENCES

- Andersen, T., 2002, Correction of common lead in U–Pb analyses that do not report <sup>204</sup>Pb: Chemical Geology, v. 192, p. 59–79.
- Drummond, M.S., and Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons: Journal of Geophysical Research, v. 95, p. 21503–21521.
- Evensen, N.M., Hamilton, P.J., and O'Nions, R.K., 1978, Rare earth element abundances in chondritic meteorites: Geochimica et Cosmochimica Acta, v. 42, p. 1199–1212.
- Martin, H., 1999, Adakitic magmas: modern analogues of Archaean granitoids: Lithos, v. 46, p. 411–429.
- Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., and Champion, D., 2005, An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution: Lithos, v. 79, p. 1–24.
- Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, p. 407–419.
- Xie, X.J., Yan, M.C., Wang, C.S., Li, L.Z., and Shen, H.J., 1989, Geochemical standard reference samples GSD 9-12, GSS 1-8 and GSR 1-6: Geostandards Newsletter, v. 13, p. 83–179.
- Zhang, S.H., Zhao, Y., Song, B., Yang, Z.Y., Hu, J.M., and Wu, H., 2007, Carboniferous granitic plutons from the northern margin of the North China block: Implications for a Late Paleozoic active continental margin: Journal of the Geological Society London, v. 164, p. 451–463.