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PHYSIOGRAPHY AROUND THE CASCADE VALLEY 
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Figure DR1. Topography of the study region illuminated from the northwest 
(derived from NZMS 260 data). The Alpine fault offsets moraines or glacial 
morphology in almost every valley it crosses (Sutherland et al., 2006). 
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Figure DR2. Catchment boundaries (bold dotted lines) near to the Cascade valley. 
Areas of permanent snow and ice cover are shaded. Lakes and active river beds 
are shown black.  



2007061  Sutherland et al: Glacial chronology, NZ 

Cascade4_DataRepository.doc Page 4 Version: 5/02/2007 

 

VALLEY HYPSOMETRY, PERMANENT SNOW COVER,  
AND GLACIER EQUILIBRIUM-LINE ALTITUDES 

In order to better understand the context and implications of the Cascade valley 
moraine sequence, additional analysis is presented here of the valley and moraine 
geometries. Catchments within a relatively small area and with very similar local 
climatic conditions and facing directions display a range of surface areas and elevation 
differences (Figs. DR2 and DR3). There is a rapid reduction in the proportion of 
permanent snow cover for the highest catchments over an altitude range 2000-1500 m 
(Fig. DR4). Modern ELA height estimates in the range 1600-1800 m have been made 
over a number of years from a small number of existing glaciers (Fig. DR 4).  

There is substantial debate about how cold conditions were during glacial maxima 
and we present one new dataset that is significant for this debate. The north branch of 
Hokuri Creek is a very small catchment with limited vertical extent, about 40 km 
southwest of the Cascade valley (Figs. DR2 and DR3). It is cut by the Alpine fault and 
has moraines that have been successively offset by c. 440, 1300, and 1900 m 
(Sutherland et al., 2006). It is possible to reconstruct the LGM extent of the former 
glacier quite accurately from observed moraine geometries, and calculate the paleo-
ELA, given a range of assumed parameters (Fig. DR 4). By comparison with modern 
catchments, we predict about 800-1000 m suppression of the permanent snowline and 
note that the inferred paleo-ELA is about 1000 m lower than modern ELAs (Fig. DR4). 
The very small areal extent of the northern Hokuri catchment above 1000 m is 
significant, because it requires that the accumulation region of the former glacier was at 
least this low. Although we have not done any modelling of trade-offs between 
temperature and precipitation, it seems intuitive to us that it is not possible to generate a 
glacier with this geometry unless conditions were c. 5-6°C cooler than present. We 
identify the glaciated catchment geometry as being one end-member of the range 
available for testing hypotheses of past temperature and precipitation in western South 
Island. 
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Figure DR3. Area-altitude relationship for: the Mount Cook region between the 
Alpine Fault and main drainage divide; the McKerrow-Big Bay catchment, which 
Hokuri Creek is a tributary within; the Cascade valley; and two branches of 
Hokuri Creek. Maximum peak heights and total surface area are reported in 
brackets.  
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Figure DR4. Present percentage of permanent snow and ice cover for catchments 
flanking the western side of Mount Cook and the McKerrow catchment, of which 
Hokuri Creek is a tributary (solid lines). Data from digital analysis of NZMS 260 
topographic map series. Contemporary equilibrium-line altitudes (ELAs) shown 
for the Ivory and Tasman glaciers (Dyurgerov, 2002). Reconstructed snow and ice 
cover for the north branch of Hokuri Creek is shown dashed and the range of ELA 
allowable for the paleo Hokuri glacier was calculated (Benn and Gemmell, 1997) 
using reconstructed glacier hypsometry and varying unknown parameters within a 
reasonable range. 
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Figure DR5. A. Typical schist boulder embedded in moraine (sample 17); note 
loose fragment 20 cm thick on right edge of top surface. B. Quartz veining on top 
surface of schist boulder (sample 15). 
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Figure DR6. A. Sample 9 has an anomalously young age and is from a relatively 
small boulder that may have rotated or/and have had fragments removed from the 
upper surface, or previously have been buried. B. Example of a boulder that has 
clearly fragmented (not sampled).  
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COSMOGENIC DATA AND AGE CALCULATION 
 

TABLE DR1. SAMPLE LOCATIONS 
Sample X Y 

1 2147700 5675900 

2 2147700 5675900 

3 2147700 5675900 

4 2148000 5676200 

5 2148100 5676100 

6 2148400 5675800 

7 2148200 5676700 

8 2148200 5676700 

9 2148200 5676700 

10 2148300 5677000 

11 2148200 5677100 

12 2148200 5677100 

13 2143800 5676500 

14 2143800 5676500 

15 2143800 5676600 

16 2143900 5676900 

17 2144100 5676800 

18 2144500 5676600 

19 2145800 5677000 

20 2145800 5677000 

New Zealand Map Grid coordinates 
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TABLE DR2. ANALYTICAL RESULTS AND EXPOSURE AGES 

Sample 
number 

Altitude 10Be surface 
production rate 

AMS code 
(blank) 

10Be/9Be 10Be 
concentration 

Age 

 (m) (atom g-1 yr-1)  (10-15) (104 atom g-1) (10Be ka) 
13 215 6.11 Be-1773 (2) 110 ± 9 10.9 ± 1.1 18.7 ± 1.9 
14 215 6.11 Be-1774 (2) 87 ± 8 8.1 ± 1.0 13.8 ± 1.7 
15 225 6.17 Be-1775 (2) 122 ± 13 12.0 ± 1.5 20.4 ± 2.6 
16 245 6.28 Be-1776 (2) 125 ± 8 12.7 ± 1.1 21.1 ± 1.8 
17 250 6.31 Be-1777 (2) 123 ± 8 12.3 ± 1.0 20.4 ± 1.7 
18 255 6.34 Be-1778 (3) 122 ± 8 11.3 ± 1.0 18.6 ± 1.7 
19 345 6.87 Be-1779 (3) 109 ± 9 14.7 ± 1.6 22.4 ± 2.5 
20 345 6.87 Be-1780 (3) 96 ± 7 11.4 ± 1.2 17.3 ± 1.9 
1 390 7.15 Be-1764 (1) 354 ± 15 39.2 ± 1.8 57.8 ± 2.7 
2 390 7.15 Be-1765 (1) 210 ± 11 21.8 ± 1.3 31.9 ± 2.0 
3 390 7.15 Be-1766 (1) 315 ± 15 34.5 ± 1.8 50.8 ± 2.7 
4 390 7.15 Be-1767 (1) 693 ± 19 53.3 ± 1.6 79.0 ± 2.4 
5 395 7.19 Be-1768 (1) 194 ± 10 20.3 ± 1.2 29.5 ± 1.8 
6 405 7.25 Be-1943 (4) 995 ± 24 53.0 ± 1.4 77.5 ± 2.1 
7 370 7.03 Be-1769 (1) 467 ± 15 52.4 ± 1.8 79.0 ± 2.8 
8 370 7.03 Be-1770 (1) 471 ± 29 53.0 ± 3.4 79.9 ± 5.2 
9 370 7.03 Be-1944 (4) 399 ± 13 21.0 ± 0.8 31.2 ± 1.3 

10 360 6.97 Be-1771 (2) 516 ± 17 76.3 ± 2.7 117.1 ± 4.2 
11 355 6.94 Be-1945 (4) 552 ± 15 27.6 ± 0.9 41.8 ± 1.4 
12 355 6.94 Be-1772 (2) 351 ± 24 52.1 ± 3.8 79.7 ± 5.8 
   Be-1761  

(= blank-1) 
21 ± 3   

   Be-1762  
(= blank-2) 

18 ± 3   

   Be-1763  
(= blank-3) 

21 ± 4   

   Be-1946  
(= blank-4) 

6 ± 9   

Samples given in order of ascending depositional age, with moraine boundaries indicated by dashed lines.  
Chemistry blanks have been subtracted. Uncertainties reported are one standard deviation. 

 

The altitude and geomagnetic-latitude scaling model of Stone (Stone, 2000), with a 
high-latitude sea-level production rate of 5.1 atom (g SiO2)-1 yr-1, was used to calculate 
the production rate of 10Be in quartz at the sampling locations, assuming maximum 
solid angle to the open sky and no attenuation by any material.  

All samples were processed and measured via Accelerator Mass Spectrometry 
(AMS) at the GNS' National Isotope Centre, with the exception of samples 6, 9, and 11, 
which were submitted for wet chemistry at PrimeLab, Purdue University (Indiana, 
USA). Blanks 1-3 were produced at GNS and blank 4 at PrimeLab. Column 5 is the 
result of the AMS measurements on samples and blanks. 

The reduction in 10Be production rate across the depth interval of sampling, relative 
to the production rate at the surface, was calculated using an exponential expression for 
attenuation of fast neutrons, with attenuation length 165 g cm-2 and average rock density 
2.65 g cm-3. All samples were taken from a 0-5 cm depth interval relative to the present-
day surface and assumed to have been exposed with this geometry since moraine 
deposition, and for there to have been zero initial 10Be concentration. See main text for 
discussion of the exposure model and other assumptions used to calculate the age. 
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Uncertainties are one standard deviation and include uncorrelated uncertainties: 
known isotope measurement uncertainties for the sample and blank; a 1 cm uncertainty 
in sample thickness; and a 0.05 g cm-3 uncertainty in sample density. 

STRATIGRAPHIC CORRELATION 
 

TABLE DR3. CORRELATION BETWEEN REVISED GLACIAL STRATIGRAPHY OF THE 
CASCADE VALLEY AND OTHER GLACIAL UNITS IN SOUTHWEST NEW ZEALAND 
Age ( cal ka) Cascade Cascade* Aurora Cave Mt. Cook N Westland 

11.5-13 CA5 C5-3 Aurora-1 Waiho  

18-15 CA5 C5-2 Aurora-2 M6 K3 

19-23 CA4 C4-1, C4-2, C5-1 Aurora-3 M5 K2-2 

40-41   Aurora-4 M4b?  

46-48   Aurora-5 M4a?  

58-65 CA3 C4-1 Aurora-6 M3? K2-1? 

75-83 CA3 C3-3,C4-1  M2?  

After (Almond et al., 2001; Denton and Hendy, 1994; Suggate, 1990; Suggate and Waight, 1999; Williams, 1996). 
*(Sutherland et al., 1995) 
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