	ID	Temp (C	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age		±1σ
	or Power (Watts)		(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)		(Ma)		
	Copper Canyon-03 hb, A15:170, Hornblende, 26.08 mg, J=0.0008133±0.09%, D=1.00562±0.00081, NM-170, Lab#=54263-01											
#	А	800	138.9	0.8799	411.7	3.47	0.58	12.4	10.0	25.2	±	1.1
	В	900	68.66	0.6760	163.9	1.63	0.75	29.5	14.7	29.51	±	0.77
	С	1000	60.66	0.9130	139.0	1.27	0.56	32.4	18.3	28.64	±	0.86
	D	1030	72.20	1.181	184.7	0.844	0.43	24.5	20.8	25.8	±	1.3
	Е	1060	82.98	2.128	213.5	0.745	0.24	24.2	22.9	29.2	±	1.4
	F	1090	65.92	4.988	153.2	0.929	0.10	31.9	25.6	30.7	±	1.1
	G	1120	61.73	8.407	146.6	2.23	0.061	31.0	32.0	27.99	±	0.70
	Н	1170	91.33	10.06	245.4	14.5	0.051	21.5	73.9	28.81	±	0.52
	I	1200	78.50	9.940	201.6	3.99	0.051	25.2	85.4	28.95	±	0.76
	J	1250	88.49	11.82	234.5	3.98	0.043	22.8	96.8	29.62	±	0.75
	Κ	1300	114.6	14.56	327.4	0.836	0.035	16.6	99.3	28.0	±	1.4
	L	1700	256.1	12.44	810.0	0.258	0.041	7.0	100.0	26.3	±	4.1
	Integrated age $\pm 2\sigma$		n=12		34.7		<2O=0.63 %		28.48	±	0.85	
	Pla	teau ± 2 o	steps B-L	n=11	MSWD=1.3	31.2	0.12	0.12		28.84	±	0.58
щ	100		42.02		single crystal, J=	0.0008115±0.0	$10\pm0.09\%$, $D=1.00002\pm0.00001$, $ N N -170$, LaD#=5420		4264	1 7		
# #	124	1.0	43.02	0.0670	03.10 267.7	0.061	1.0		42.9	20.0	±	1.7
# #	014	1.0	97.90	0.4490	207.7	0.179	1.1		19.3	27.4	±	1.2
# #	110	1.0	20.07	0.2420	179.5	0.100	2.1		20.9	20.4	±	1.1
# #	050	1.0	29.97	0.0006	57.62	0.102	9.0 5.6		55 0	29.09	± +	0.00
# #	004	1.0	37.00	0.0900	37.03	0.346	5.0		55.0 60.7	20.20	±	0.37
# #	034	1.0	07.60	0.0773	40.10	0.245	0.0		76.4	20.49	±	0.74
# #	044	1.0	1216	0.1127	22.00	0.217	4.5		15.4	20.7	±	0.73
# #	004	1.0 1.0	72.60	0.0000	304.U 177 1	0.039	9.0 2.9		10.7	30.7	± _	4.3
# #	014	1.0 1.0	73.00 54.60	0.1330	110.4	0.007	3.0 1.5		20.9 40.2	30.9	± _	3.U 3.4
# #	104	1.0 1.0	22.01	11 17	05.90	0.047	0.046		40.3	20 /	т -	3. 4 3.0
# #		1.0 1.0	33.01	0.0120	20.00	0.004	0.040		19.1	30.4 29.6	± _	3.U 6.0
#	064	0.1	32.02	-0.0130	16.00	0.039	-		63.0	30.0	±	0.0

Table DR1. ⁴⁰Ar/³⁹Ar analytical data.

#	11B	10	38.62	0.0290	67.30	0.103	17.6		48.5	27.2	±	1.4
#	08B	10	33.95	-0.0201	47.50	0.152	-		58.6	28.9	±	1.6
	03B	10	23.12	0.0072	10.05	1.246	70.9		87.2	29.27	±	0.16
	05B	10	24.44	0.0093	13.83	0.948	54.9		83.3	29.55	±	0.20
	01B	10	26.21	0.1351	19.84	1.578	3.8		77.7	29.56	±	0.15
	07B	10	29.15	0.0240	29.40	0.357	21.3		70.2	29.73	±	0.70
	04B	10	24.72	0.0234	13.42	0.607	21.8		84.0	30.13	±	0.32
	02B	10	24.99	0.0508	13.78	0.718	10.0		83.7	30.37	±	0.24
#	06B	10	59.41	0.0506	129.5	0.417	10.1		35.6	30.68	±	0.59
#	09B	10	46.84	0.0520	85.50	0.222	9.8		46.1	31.30	±	0.87
#	12B	10	33.32	0.0047	39.60	0.264	108.6		64.9	31.38	±	0.59
#	10B	10	370.0	18.20	980.0	0.003	0.028		22.1	117.0	±	56.0
	Mean age	e ± 2σ		n=6	MSWD=3.6		30.4	±53.0		29.62	±	0.32

Notes:

symbol preceding sample ID denotes analyses excluded from mean age calculations.

J = J-factor ± 1s, D = discrimination ± 1s, K/Ca calculated from measured $({}^{3\prime}Ar/{}^{39}Ar)_{K}$

NM- followed by a number indicates the irradiation batch, and Lab# is a unique laboratory identifier for the analysis.

Following the individual analyses for each sample, n=number of analyses used in the mean age calculation,

MSWD is mean of standard weighted deviates, and mean K/Ca is arithmetic mean and standard dev. of Kea determinations.

Analytical methods and parameters:

Analytical methods and pa	irameters:
Mineral separation methods	heavy liquid (lithium metatungstate), magnetic (Franz), hand-picking
Irradiation geometry	alternating samples and monitors in machined AI discs
Irradiation facility	D-3 position, Nuclear Science Center, College Station, TX
Irradiation batch	NM-170 (7 hours)
Neutron flux monitor	Fish Canyon Tuff sanidine (FC-1) @ 28.02 Ma (Renne et al., 1998)
Lab	New Mexico Geochronology Research Laboratory, New Mexico Tech, Socorro, NM
Spectrometer	Mass Analyzer Products 215-50
Extraction system	automated, all-metal
Laser	50 watt Synrad CO ₂ laser
Heating procedures	hornblende: resistance furnace step-heating; biotite: single-crystal two-step laser heating
Gas cleanup	two SAES GP-50 getters@ ~450°C and 20°C, W filament @ ~2000°C, cold finger @ -120°C
Gas cleanup times	2 minutes
Electron multiplier sensitivity	1.7 x 10 ⁻¹⁷ moles/pA (laser analyses); 3.5 x 10-17 moles/pA (\furnace analyses);
Mean system blank furnace	202, 0.6, 0.3, 2.3, 0.7 x 10 ⁻¹⁰ moles @ masses 40, 39, 38, 37 and 36
Mean system blank laser	275, 0.2, 0,2, 0.1, 1.1 x 10 ⁻¹⁸ moles @ masses 40, 39, 38, 37 and 36
J-factor determination	CO ₂ laser-fusion of 4 single crystals from each of 4 radial positions around irradiation tray
J-factor precision	±0.2%
Correction factor monitors	K-glass and CaF ₂
Correction factors NM-77	$({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\text{K}} = 0.0002 \pm 0.0003; ({}^{36}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}} = 0.00028 \pm 0.000005; ({}^{39}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}} = 0.0007 \pm 0.000032$
Isotopic ratio corrections	blank, radioactive decay, mass discrimination (not corrected for interfering reactions)
Individual analysis errors	analytical error only (uncertainties in interfering reactions and J factors excluded)
Mean age	weighted mean age of Taylor (1982)
Mean age error calculation	weighted error of the mean (Taylor, 1982), multiplied by root of MSWD where MSWD>1
Mean age errors	uncertainties in interfering reactions and J factors included
Integrated age	recombination of isotopic measurements of all steps.
Integrated age error	recombination of errors of isotopic measurements of all steps.
Decay constants	Steiger and Jaeger (1977)

