Data Repository Item DR2009084

Supplementary material DR1: Degassing during contact metamorphism as an explanation of the negative carbon isotope excursion associated with the emplacement of the Emeishan LIP

Our measurements of the δ^{13} C of dolostones from the Sinian formation range from +4.7 to -1.1, values which are consistent with Jacobsen and Kaufman's (1998) estimate of δ^{13} C in Neoproterozoic seawater (+4 to -4 ‰, with most of the data between +2 and -2 ‰). If we assume that (1) end-Guadalupian seawater contained ~40000 Gt C with δ^{13} C = +5 ‰ (Berner, 2005), (2) end-Guadalupian atmosphere contained ~2850 Gt C (Rothman 2002) with δ^{13} C = -2 ‰ (7 ‰ more negative than seawater (Mora et al. 1996)), then the average δ^{13} C of the ocean-atmosphere system was +4.5.

After the addition of 16800 Gt of magmatic CO₂ (4580 Gt C with $\delta^{13}C = -6$), 62500 Gt of CO₂ from destabilized Sinian dolostone (17000 Gt C with $\delta^{13}C = 0$) and potentially 84000 Gt CO₂ from the metamorphism of organic carbon (=22900 Gt C with $\delta^{13}C \sim -22$), the bulk composition of the ocean-atmosphere system is changed to between $\delta^{13}C = +2.6$ ‰ (if no organic contribution) and -3.9 (if 22900 Gt C from the metamorphism of organic carbon was added with $\delta^{13}C \sim -22$). If we then assume that ocean-atmosphere equilibrium is rapid (flux ~90 Gt/y as current estimation) and the difference between the carbon isotope compositions of ocean and atmosphere is fixed at the timescales we consider ($\delta^{13}C_{atm} = \delta^{13}C_{ocean} - 7$ ‰), as supposed by Mora (1996) and Beerling et al. (2002), then the effect of emplacement of the Emeishan LIP in the Sinian Basin is a negative carbon excursion for the ocean-atmosphere system from an average of $\delta^{13}C = -2$ before the degassing to an average of $\delta^{13}C = -4.4$ to -10.9 after degassing.

References cited

- Beerling, D.J., Lake, J.A., Berner, R.A., Hickey, L.J., Taylor D.W., and Royer D.L., 2002, Carbon isotope evidence implying high O₂/CO₂ ratios in the Permo-Carboniferous atmosphere. Geochimica et Cosmochimica Acta, v. 66, p. 3757-3767, doi: 10.1016/S0016-7037(02)00901-8.
- Berner, R.A., 2005, The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic: Geochimica et Cosmochimica Acta, v. 69,p. 3211-3217, doi: 10.1016/j.gca.2005.03.021.
- Jacobsen, S.B., and Kaufman, A.J., 1999, The Sr, C and O isotopic evolution of Neoproterozoic seawater: Chemical Geology, v. 161, p. 37-57, doi: 10.1016/S0009-2541(99)00080-7.
- Mora, C.I., Driese, S.G., and Colarusso, L.A., 1996, Middle to Late Paleozoic Atmospheric CO₂ Levels from Soil Carbonate and Organic Matter: Science, v. 271, p. 1105-1107, doi: 10.1126/science.271.5252.1105.

1 Supplementary material DR2: An overview of reactions in a metamorphic

2 aureole in a sedimentary basin

The amount of gas released during metamorphism depends on the type of sediment and
its chemical composition, and on the conditions (P,T, Xfluid) of metamorphism.

- At the highest temperatures, calcite melts incongruently to CaO and CO₂. Solid or
 liquid calcite is assimilated into the magma where it reacts to Ca which is absorbed
 in the magma or overlying rocks and CO₂, which degasses.
- 8 Thermal decomposition of pure anhydrite (CaSO₄ = CaO + SO₂ + $\frac{1}{2}$ O₂) begins at 9 1100°C and reacts readily only at temperatures around 1400 °C. Impure anhydrite 10 containing clay, graphite or carbon monoxide reacts at temperatures well below 11 $1000^{\circ}C (2CaSO_4 + C = 2CaO + CO_2 + 2SO_2 \text{ and } CaSO_4 + CO = CaO + CO_2 + CO_$ 12 SO₂). Kuusik et al. (1985) report thermal decomposition of anhydrite in CO/N 13 mixtures at 900 °C. Impurities such as SiO₂ lower the decomposition temperatures 14 by up to 100 °C. West and Sutton (1954) report decomposition of anhydrite with 15 20% added carbon at 615°C in a nitrogen atmosphere.
- Thermal decomposition of pure limestone (CaCO₃ = CaO + CO₂) strongly depends
 on the water content. In the absence of water, decomposition starts only at high
 temperature, around 1200°C; when aqueous fluid is present, the temperature is
 lower (~700°C).
- Dolomite reacts to calcite, periclase and CO₂ (CaMg(CO₃)₂ = CaCO₃ + MgO +
 CO₂) at 700°C. In the presence of aqueous fluid the temperature decreases to below
 ~450°C
- Calc-silicates containing forsterite and diopside form from impure limestones and
 marls. These reactions release considerable CO₂ and proceed at relatively low
 temperatures, between 450 and 500°C.

26	• Organic matter in carbonates or shales releases CH ₄ and/or CO ₂ . Cracking of
27	hydrocarbons starts at ~100°C and reaches a maximum around 550 °C.
28	• Other gases are released from specific sediment types. Salts break down to
29	halogens; pyrite in sulfide-rich shales oxidises or breaks down to Fe-oxide releasing
30	sulfur oxides; coal burns to release CO ₂ .
31	The reactions within an aureole thus release a series of greenhouse or toxic gases,
32	including CO ₂ , SO ₂ , CH ₄ , and halogens, as summarized in Figure 2.
33	
34	References cited
35	Kuusik, R., Saikkonen, P., and Niinisto, L., 1985, Thermal decomposition of calcium
36	sulfate in carbon monoxide: Journal Thermal Analysis and Calorimetry, v. 30,
37	p. 187-193.
38	
39 40	