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Analytic Solutions to the Diffusion Equation for Cinder Cone Evolution

The diffusion equation in polar coordinates with radial symmetry is
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If x is a constant, Equation (1.1) becomes
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The solution to Equation (1.2) with an initial radially-symmetric topography f(r) and a constant-elevation
boundary condition h(a,t) =0 at r = a is given by
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where ay,,n = 1,2, ... are the positive roots of Jy(aa) = 0 and Jy(r) and J;(r) are Bessel functions of the first
and second kind (Culling, 1963). This solution utilizes two boundary conditions. First, at » = 0 Equation

(1.3) implicitly assumes
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because Equation (1.3) is a series comprised of even functions of radius (i.e. Jy(r)). The Bessel function
Jo(r) has a derivative of zero at r = 0, so a series comprised of a sum of these functions must also obey that
condition. The second boundary condition is a constant elevation of zero at = a. For simplicity we assumed
the elevation of the surrounding alluvial flat equal to zero, but any constant value could be used. In hillslope
geomorphology, a fixed-elevation boundary condition applies to a channel that is capable of transporting all
of the sediment delivered by the hillslope, resulting in neither deposition nor erosion at the channel location.
In the cinder cone case, a fixed elevation at r = a could correspond to a channel that wraps around the base
of the cone, but this is not a common occurrence. In most cases, volcanic cones are surrounded by alluvial
flats that do not readily transport material from the base of the cone. Equation (1.3) can still be used for
these cases, but a must be chosen to be much larger than the radius of the cone. This way, debris will be
removed from the cone and deposited on the surrounding flat. In these cases, the boundary condition at
r = a will simply serve to maintain the alluvial flat or piedmont at a constant elevation very far from the
base of the cone.

For a volcanic cone of radius 7., crater-rim radius r,, colluvial fill radius of 7, and maximum height of hg
(Figure 1.1), f(r) is given by
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As a technical point, it should be noted that the colluvial fill radius 7 must be finite in order for Equation
(1.3) to apply because otherwise the boundary condition given by Equation (1.4) is violated. Physically,
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Fig. 1.1. Plots of analytic solutions to the diffusion equation for a volcanic cinder cone for a range of times following
eruption.

ry corresponds to the width of the colluvium that fills the crater shortly following eruption. Substituting
Equation (1.5) into Equation (1.3) gives
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The three integrals that appear in Equation (1.6) can also be written as infinite series. In practice, however,
it is more accurate to evaluate those integrals numerically because the series converge very slowly. Therefore,
although closed-form analytic solutions for volcanic cones can be written down, calculating and plotting the
solutions requires some numerical work.

First, we must solve for the roots of Jy(aa) = 0. This is done numerically using a root-finding technique.
The Bessel function has an infinite number of roots, so how many do we need to compute? For our purposes,
the first one hundred roots are adequate, but more roots may be required for high-resolution profiles or very
young cones. Second, we must evaluate the integrals in Equation (1.6) numerically. The integrals in Equation
(1.6) were computed using the gsimp routine of Press et al. (1992).

Figure 1.1 illustrates radial profiles of Equation (1.6) for the initial cone and at eight subsequent times
from xt/a? = 0.0001 to xt/a® = 0.0128. Both axes are normalized. The y-axis is normalized to the initial
cone height hg. As in all diffusion problems, the solution can be scaled up or down in height with no change
in the relative cone shape. The r-axis is scaled to the model domain length a.

In the cones early-stage evolution, the greatest change occurs at the crater rim. This is not surprising since
this is where the profile curvature is greatest. For intermediate times, the position of the crater rim migrates
inward. This migration is associated with the additional advective term in Equation (1.1) that is not present
in 2D diffusion problems. Eventually, the crater is filled with debris and the late-stage cone morphology
is described by Jy(ar) with decreasing amplitude over time. At this point, the exponential time-dependent
term in Equation (1.3) has filtered all of the high-frequency components in the topography and only the
lowest-frequency term is significant in the series. The inset photo in Figure 1.1 shows the profile of an early
Quaternary volcanic cone in the Cima volcanic field, California. The profile shape is similar to the late-stage
profiles plotted in Figure 1.1.

Figure 1.2 compares the observed topography of two cones in the Crater Flat volcanic field, Nye County,
Nevada, to best-fit model solutions. Lathrop Wells Cone has been radiometrically dated to be 77 ka, while
Black Cone has an age of 1.1 Ma. A nonlinear diffusion model is needed to properly resolve the slope rotation
component of cone evolution, but the linear model can be fit to observed data by assuming an initial angle
comparable to angles observed on young cones such as Lathrop Wells. Model solutions compare well to
the observed profiles, and best-fit morphologic ages are 400 and 4000 m?, respectively. The ratio of the
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Fig. 1.2. (b) Observed (thick line) and best-fit model profiles (thin line) for a relatively young (Lathrop Wells Cone)
and a relatively old (Black Cone) cone in the Crater Flat volcanic field, Nevada (location map in (a)).

morphologic age to the radiometric age provide estimates for the time-averaged x values for these cones: 5.2
and 3.6 m?/kyr. These values are at the upper range of s values inferred from pluvial shoreline and fault
scarps in the southwestern U.S.



