

Fig. DR-1. Photographic time series over 10 years showing sequential weathering of the 1-2 cm-thick tephra test plot located on a relict terrace surface in Bettles Well Canyon, Gabbs Valley Range. Tephra sample was taken from a nearby outcrop of similar ash (tephra BS-3 in Bell et al., 1999). At time of initial creation in September 1994 (A); arrows point to same rock for reference. After the first six months (B), the ash layer remained cohesive and had developed a case-hardened crust. After 10 months (C), the ash had thinned to < 1 cm and most surface clasts were exhumed from the ash cover. After two years (D), the tephra was no longer preserved as a coherent surface layer, marking the maximum life expectancy of the tephra bed. By 1998 (E) all of the ash had been eroded or intercalated into the A horizon of the soil. In 2005 (F), our inspection showed that the relict terrace surface had been completely reclaimed and that a cryptobiotic crust had formed.

Table DR-1. Radiocarbon data for late Holocene Mono-Inyo Craters tephra.

Sample No.	¹⁴ C age (yrs BP)	Calibrated Age (Dominant; Cal yrs BP)	Material	Lab No.	Comments/References
Mina (Gabbs \	Valley Range-Pi	lot Mountains)			
RC-BW4	435±110	317-543	peaty soil	GX-17253	5 cm below 2 cm thick tephra BS27 in peat deposit (Bell et al., 1999).
RC-BW2	535±150	439-671	woody peat	GX-17251	6 cm above 4 cm thick tephra BS25 in peat deposit (Bell et al., 1999).
JY-90-41	555±40	529-629	woody peat	GS-2962	Immediately below 20 cm thick tephra-rich silt on south flank of Excelsior Mountains (J.C. Yount, 2005, written commun.).
RC-BW5	790±105	655-899	peaty soil	GX-17254	6 cm above 5 cm thick tephra BS25 in peat deposit (Bell et al., 1999).
RC-BW1	995±110	783-989	woody peat	GX-17250	6 cm below 4 cm thick tephra BS25 in peat deposit (Bell et al., 1999).
RC-BW6	1025±65	829-989	peat	GX-17255	6 cm below 5 cm thick tephra BS25 in peat deposit (Bell et al., 1999).
RC-BW7	1110±110	929-1148	woody peat	GX-17256	6 cm above 2 cm thick tephra BS24 in peat deposit (Bell et al., 1999).
JY-90-37	1175±40	1056-1171	woody peat	GS-2959	Immediately below 5 cm thick tephra on south flank of Excelsior Mountains (J.C. Yount, 2005, written commun.)
RC-BW10	1505±110	1308-1517	organic soil	GX-18939	Av horizon immediately below 1 cm thick tephra BS1in debris flow deposit (Bell et al., 1999).
RC-BW8	1550±110	1335-1545	peaty soil	GX-17257	15 cm below 2 cm thick tephra BS24 in peat deposit (Bell <i>et al.</i> , 1999).
RC-BW9	1605±120	1371-1617	charcoal	GX-17566	Same horizon as 2 cm thick tephra BS2 in debris flow deposit (Bell et al., 1999).
RC-BW11	2355±405	1894-2853	organic soil	GX-18940	Av soil horizon immediately below 2 cm thick tephra BS2 in debris flow deposit (Bell et al., 1999).
JY-90-33	3849±40	4154-4296	woody peat	GS-2962	Immediately below six tephra layers on south flank of Excelsior Mountains (J.C. Yount, 2005, written commun.)
Wassuk Range	e-Bodie				
WA-1	650±70	557-669	charcoal/peat	Beta-84854	Immediately below three 2–6 cm thick tephra layers in debris flow deposit in Garfield Creek.
WA-11	720±40	660-680	charcoal	Beta-215707	Fire burn layer immediately below 10 cm thick tephra and ash-filled debris flow in Copper Canyon.
WA-2	810±40	680-750	charcoal	Beta-207837	Immediately below 3–5 cm thick tephra in debris flow deposit in Corey Creek.
WA-9	900±40	760-910	charcoal	Beta-215706	Fire burn layer immediately below 2-3 cm thick tephra and ash-filled debris flow in Copper Canyon.
73RCB187	1040±40	924-979	charcoal	W-3078	15 cm below 5–10 cm thick tephra in probable debris flow deposit in Alum Creek (R.C. Bucknam, 1997, written commun.).
WL-A-1B	1520±200	1263-1633	carbon-rich soil	W-3510	Immediately below 2 cm thick tephra in probable debris flow deposit in Bodie Creek (R.C. Bucknam, 1997, written commun.).
Walker River a	ırea				
WR7	440±130	315-551	charcoal	GX-18130	90 cm above 3 cm thick tephra WR7 in river terrace deposit south of Schurz.
WR4	685±135	539-733	charcoal	GX-18127	Immediately below 4 cm thick tephra WR6 in river terrace deposit south of Schurz.
WR6	1230±125	1055-1282	peat	GX-18129	60 cm below 3 cm thick tephra WR7 in river terrace south of Schurz.
WR1	1455±140	1262-1529	charcoal/wood	GX-16952	15 cm above lower 1 cm thick Turupah Flat tephra of Davis (1978) in alluvial deposits at Weber Dam.
WR2	1590±130	1347-1614	charcoal/wood	GX-16953	3 cm below lower 1 cm thick Turupah Flat tephra of Davis (1978) in alluvial deposits at Weber Dam.
JOD13	2000±50	1890-1997	charcoal	TX-2399	50 cm below lower 1 cm thick Turupah Flat tephra in alluvial deposits at Weber Dam (Davis, 1978).
Fairview Peak					
FP1	515±235	289-698	carbonized wood	GX-23995	Immediately below 2 cm thick tephra FP2 in debris flow deposit in Bell Canyon South (Bell et al., 2004).
FP2	1335±115	1134-1352	charcoal	GX-23996	10 cm below 3 cm thick tephra FP3 in debris flow deposit in Cabin Wash (Bell et al., 2004).
Carson Lake					
Adams1	812±72	674-790	charcoal	AA-42196	5 cm below Turupah Flat tephra in beach barrier dune deposit at Salt Wells (Adams, 2003).
Adams2	1510±40	1341-1417	grass mat	GX-29220	30 cm below Turupah Flat tephra in lacustrine deposits in trench 5 of Bell (1979); dated by Adams (2003).
CL1	1555±140	1307-1569	charcoal	TX-4079	Equivalent to/slightly above 2 cm thick Turupah Flat tephra (Bell, 1979).
CL3	1680±110	1508-1711	charcoal	TX-4080	60 cm below 2 cm thick Turupah Flat tephra (Bell, 1979).
Dixie Valley					
SGRC7B	1040±40	924-979	charcoal	GX-27160	Immediately below 1 cm thick tephra in Dixie Comstock trench (Caskey et al., 2002).
11Mile	2585±165	2457-2848	organic soil	GX-17567	Av soil horizon immediately below 1.5 cm thick tephra in 11Mile Canyon (Bell et al., 2004).

Adams, K.D., 2003, Age and paleoclimatic significance of late Holocene lakes in the Carson Sink, NV, USA: Quaternary Research, v. 60, p. 294–306.

Bell, J.W., 1979, Final Technical Report, Quaternary fault map of the Reno 1 x 2° quadrangle: US Geological Survey Open-file Report 81-982, 62, 92.

Bell, J.W., dePolo, C.M., Ramelli, A.R., Sarna-Wojcicki, A.M., and Meyer, C.E., 1999, Surface faulting and paleoseismic history of the 1932 Cedar Mountain earthquake area, west-central Nevada, and implications for modern tectonics of the Walker Lane: Geological Society of America Bulletin, v. 111, no. 6, p. 791–807.

Bell, J.W., Caskey, S.J., Ramelli, A.R., and Guerrieri, L., 2004, Pattern and timing of faulting in the central Nevada seismic belt, and paleoseismic evidence for prior belt-like behavior: Bulletin of the Seismological Society of America, v. 94, no. 4, p. 1229–1254.

Caskey, S.J., Bell, J.W., Ramelli, A.R., Adams, K.D., and Reheis, M.C., 2002, Historical faulting, chronostratigraphy, and paleoseismicity of the central Nevada seismic belt: Friends of the Pleistocene, Pacific Cell, 2002 Fall Trip Guidebook, 113 p.

Davis, J.O., 1978, Quaternary tephrochronology of the Lake Lahontan area, Nevada and California: Nevada Archeological Survey Research Paper 7, 137 p.