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WILBUR AND AGUE; APPENDIX DR1 

 

MINERAL ANALYSES 

Two-dimensional chemical maps as well as chemical profiles were done at 15 kV using 

the JEOL JXA-8600 electron microprobe at Yale University using wavelength-dispersive 

spectrometers, natural and synthetic standards, mean atomic number (MANB) and off-peak 

background corrections, and φ(ρz) matrix corrections. Peak T was insufficient to homogenize 

compositions by diffusion, so the chemical zonation patterns provide a valuable record of 

reaction histories (cf. Kohn and Spear, 2000; Spear and Daniel, 2001; Carlson, 2002). Chemical 

maps were done with MANB and either 100 nA beam current and 1.5 second dwell times, or 200 

nA beam current and 0.25 second dwell times. High spatial resolution profiles indicate similar 

concentrations for Ti and Y across core-rim boundaries in WepS garnets (not shown). 

NOTES ON MONTE CARLO CRYSTAL GROWTH SIMULATIONS 

We use the Monte Carlo (MC) method of Xiao et al. (1988) to model crystal growth at 

constant P. The treatment includes diffusion of nutrient through the fluid phase to the growing 

crystal, surface attachment kinetics, and diffusion along crystal faces (a form of surface 

relaxation). We extend the method to allow for variable amounts of equilibrium overstepping 

during growth. The goal of the modeling is to investigate whether crystal morphology transitions 

in metamorphic rocks can be related to the degree of reaction overstepping, not to reproduce 

crystal shapes and sizes exactly. The simulations are done on a two-dimensional, trigonal lattice 

(1000 x 1000 grid size). Nutrient aqueous species dissolved in the fluid are generated in a 

circular source region at some distance from the growing crystal. Diffusion through the fluid 

takes place according to a random-walk process through the grid. Intervening mineral grains 
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could modify diffusion pathways, but we note that if nutrient supplies were strongly anisotropic, 

then the natural crystals would have grown with marked asymmetries (cf. Xiao et al., 1990). 

Although diffusion rates are not quantified, lattice units in the crystal have the same length as the 

mean free path for diffusion, appropriate for growth from a liquid (Xiao et al., 1990). The 

probability that nutrient diffusing through the fluid will bond to the crystal surface on contact at 

site i (Pi) is given by the rate of impingement of nutrient (K+) relative to the sum of the rates of 

impingement and detachment (K-): 
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where k is the Boltzmann constant, T is absolute temperature, Ei is the interaction energy for the 

growth unit and its nearest and next-nearest neighbors in the solid, and ν  is a vibration factor. 

kT/μΔ is the thermodynamic driving force for crystallization that acts to bond growth units to 

the crystal. The chemical potential difference μΔ  reflects the average Gibbs free energy 

difference between the compositions of the supersaturated fluid and the fluid in equilibrium with 

the solid directly at the solution-crystal interface. Crystallization at low kT/μΔ  near chemical 

equilibrium favors growth of compact, facetted, euhedral crystals whereas high 

kT/μΔ corresponds to strong disequilibrium and results in anhedral or “branched” forms (Xiao 

et al., 1988). iii mnE 21 Φ+Φ= ; 1Φ  and 2Φ are the interaction energies per molecule between a 

given site in the lattice and its ni nearest neighbors and mi next-nearest neighbors, respectively. 

The “normalized bond strength” kT/1Φ  increases as bond strength increases or T decreases. 

+
eqK  is the equilibrium value of K+ and is evaluated assuming local equilibrium directly at the 

crystal surface (rates of attachment and removal are equal). The nutrient may bond to the crystal, 
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diffuse along the surface, or return to the fluid phase. If the nutrient does not bond, the jump rate 

from site i on the crystal to site j is: 

)/exp( kTEK ijsji Δ−=→ ν                                                (2) 

where sν is a vibration factor. ijEΔ is the activation energy approximated by 

)()( 21 jiji mmnn −Φ+−Φ ; n and m denote numbers of nearest and next-nearest neighbors, 

respectively, for site i and the potential jump site j. The probability of a jump from site i to a 

particular neighbor site j on the crystal or in the fluid is given by the ratio of the jiK →  value for 

the jump relative to the sum of the jiK → values for all possible nearest-neighbor jumps. 

Computer solution follows the flow chart given in Figure 2 of Xiao et al. (1988), with the 

exception that we account for variable kT/μΔ  during model crystal growth. We found that 

12 / ΦΦ  values less than ~ ±0.2 were best for replicating the observed garnet morphologies. 

There are scale-dependent aspects to crystal growth (Xiao et al., 1988), but the general 

conclusions regarding overstepping and morphology will be appropriate for macroscopic 

crystals. For example, the transition from “branched” to compact, euhedral crystal forms will 

shift to slightly smaller kT/μΔ  and larger  kT/1Φ  as model crystal size increases (Xiao et al., 

1990), but growth in the 3rd dimension, which we neglect, tends to have the opposite effect and 

stabilizes compact, euhedral forms at larger kT/μΔ  (Xiao et al., 1991). Thus we infer that these 

two effects will tend to cancel. 

Early growth at large kT/μΔ  followed by growth at lower kT/μΔ  is successful at 

qualitatively reproducing the observed garnet morphologies. We examine two possibilities for 

variations in kT/μΔ during crystal growth. In the first, growth occurs initially at large kT/μΔ  

and then drops to a low value at a prescribed stage of the growth history. In the second, the 
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log10( kT/μΔ ) decreases linearly from an initial large value to a final small one. Many other 

possible kT/μΔ  paths are possible, but the two examined here both capture the basic 

morphological characteristics of the crystals. Future refinement of the crystal growth models 

may allow kT/μΔ -time paths to be accurately determined based on crystal morphologies. In all 

examples shown, the model crystals comprise 100,000 molecular growth units. 
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