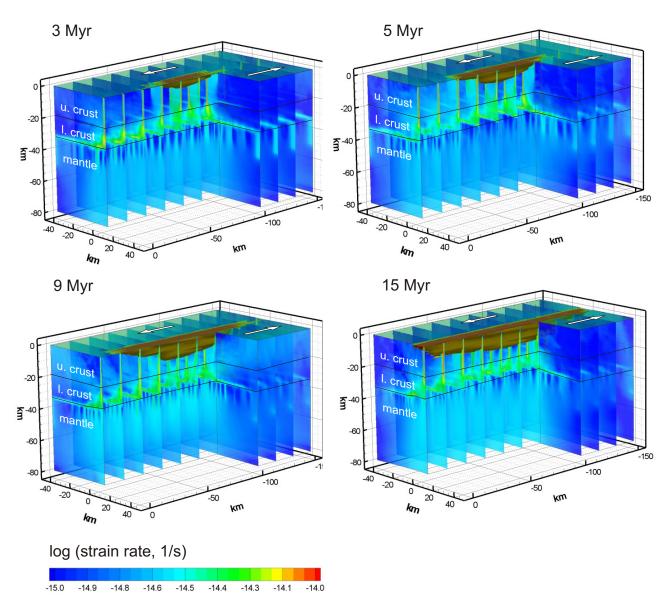
DR 2006077

Petrunin, A and Sobolev, S.V, What controls thickness of sediments and lithospheric deformation at a pull-apart basin?

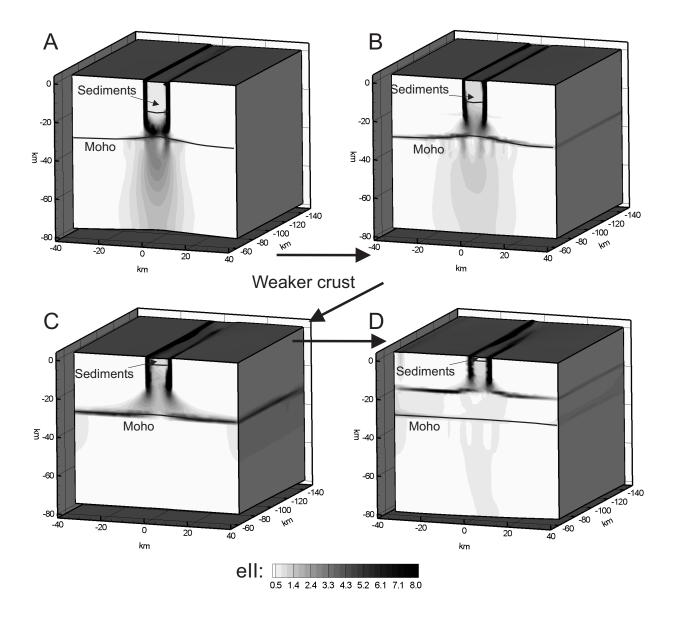
SUPPLEMENTARY DATA

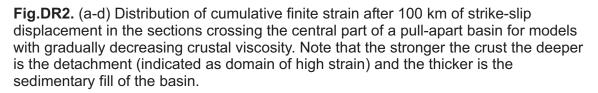
Parameters	Upper crust	Lower crust	Mantle
Elastic and thermal constants [19]	strong/weak	strong/weak	
ρ, [kg/m³](at 20°C and 0.1 MPa)	2700 2450(sediments)	3000	3300
α, [K ⁻¹]	3.7 10 ⁻⁵	2.7 10 ⁻⁵	3.0 10 ⁻⁵
K, G, [Gpa]	55, 36	63, 40	122, 74
C _p , [J/kg/K]	1200	1200	1200
λ, [W/K/m]	2.5 2.0 (sediments)	2.5	3.3
W, [µW/m ³]	1.3	0.2	0
Power-law creep constants	G&T1995	R&D2001	H&K1996
A,[MPa ⁻ⁿ s ⁻¹])	1.0 .10-4/1.0	$\begin{array}{c} 4.0 \cdot 10^2 / 4.0 \\ \cdot 10^6 / 4.0 \cdot 10^{10} \end{array}$	$4.9 \cdot 10^4$
E _a , [J/mol]	$2.23 \cdot 10^5$	3.56·10 ⁵	5.35·10 ⁵
n,	4.0	3.0	3.5
Mohr-Coulomb elasto- plasticity with softening	Friction angle: 30°; dilation: 0°; cohesion: 20 MPa; linear decrease of cohesion to 2 MPa at strain 0.1 and of friction to 10 from strain 1.0 to 2.0		The same as for the crust

Table DR1. Rheological and thermo-elastic parameters used in the modelling.


DR 2006077

First Index,	1-surface heat flow	2-60 mW/m2	3- 70 mW/m2	4-80		
temperature	50 mW/m2			mW/m2		
Second Index,	1-laboratory data	2-reduced strength	3- strongly reduced	-		
Lower crustal	R&D2001	R&D2001, A*10 ⁴	strength R&D2001,			
rheology			A*10 ⁸			
Third Index, density	1-2200 kg/m3	2-2450 kg/m3		-		
of sediments						
Additional Index: w (wide)-15 km spacing between the faults instead of 10 km in other models.						
Model "weak": same as m2.2.2 but with reduced strength of the upper crust (G&T1995 with A*10 ⁴)						
Examples: m2.1.1 indicates a model with 60 mW/m2 surface heat flow, laboratory data for lower						
crustal rheology, 2200 kg/m3 for density of sediments and 10 km spacing between the faults; model						
m3.2.2 indicates a model with 70 mW/m2 surface heat flow, reduced strength of the lower crust						
(R&D2001, A*10 ⁴), 2450 kg/m3 for density of sediments and 10 km spacing between the faults;						
model m3.2.2w indicates a model which is the same as model m3.2.2 but with spacing between the						
faults of 15 km instead of 10 km.						
List of models (models where no pull-apart deformation was achieved are underlined):						
<u>m1.1.1</u> , <u>m1.2.1</u> , m2.1.1, m2.1.2, m2.2.1, m2.2.1w, m2.2.2, m2.2.2w, m2.3.2, m.3.2.2, m4.2.2,						


Table DR2. Model specification


R&D2001: Rybacki and Dresen (2001); G&T1995: Gleason and Tullis (1995); H&K1996:

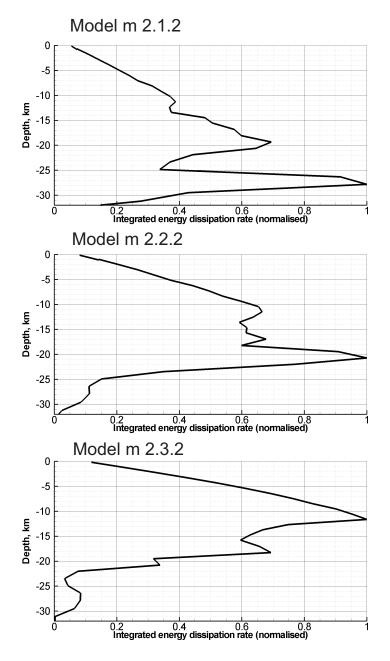

Hirth and Kohlstedt, 1996

Fig. DR1. Evolution of the strain rate distribution for the pull-apart model m2.2.1. The colours show log strain rate distribution at cross-sections. Note that the upper-middle crust beneath the growing basin (brown) is almost completely detached from the lower crust and upper mantle.

Fig. DR 3. Depth dependencies of the integrated rate of energy dissipation beneath the central part of a model basin for models with different viscosity of the lower crust. The values are normalized