Data Repository Item 2006088

Name on Fig. 1			Sa	Kn	Jw	Ci	Ku	Sw	Ka	Su	Ti-Ar	Bk
Section		Chinji	Samba-	Kangra	Jawa	Chimnum	Kumahatti-	Swat	Karnali	Surai	Tinau-	Bakaiya-
		-	Mansar	_			Nahan	area			Arung	Rato
							highway				area	area
Reference	Lyon-	Burbank	Burbank et	Brozovic	Brozovic	Najman	Najman et	****	Gauta	Gautam	Gautam	Gautam
	Caen	et al.,	al., 1996	and	and	et al.,	al., 2004		m and	and	and	and
	and	1996		Burbank,	Burbank,	2004	****		Fujiwar	Rosler,	Rosler,	Rosler,
	Molnar,			2000	2000				a, 2000	1999	1999	1999
	1985											
Base pre-Siw.***	30					20,5*	<30 (27)	26				
Base up. Group												
pre-siw.		18				17	17					
Base Lower Siw.	15	14		11,2*	12,3*	12,8	**	**	15,8	13*	14*	11,5*
Base middle Siw.	11	11	10*	10,5	10,9	**	**	**	9,5	9,8	9,2	7,8
Base upper Siw.	5	8	6	6,8	7,2	**	**	**	3,9	5,2	3,8	3,1
Top of section	0		0.8	6.8	4.8	12.3	14	15	1.8	1.8	1.2	2

Table DR1 : Age of the Tertiary lithostratigraphic units inferred from magnetostratigraphic studies and others methods

*Base truncated; ** Unit absent; *** base pre-Siw. or undifferentiated pre.Siw.; ****top of the section from Ojha, personnal communication; base from detrical thermal cooling data (Sakai et al., 1999); ***** detrital thermal cooling data (27 Ma assuming a lag time of 3 My for zircon dating (Bernet, personnal communic.).

Table DR2 : The migration of the pinch-out of the Tertiary basin

Column 1- Locations are indicated from West to East on Fig.1. (* refers to pinch-out located above a tertiary unconformity).

Column 2- Full name of the drill-hole or location of the outcrop.

Column 3- Present day distance from the drill-hole to the southern edge of the basin measured on a 1/2500000 scale topographic map, with the south edge line of the basin represented on Fig. 1.

Column 4 and 5- Displacement towards the south of the thrust sheets estimated from balanced cross-section for the drill-holes of the sub-Himalayan zone and the outcrops of the Lesser Himalaya (Reference on column 5). \mathbf{P} for drill-holes in the plain (no motion) and \mathbf{F} for drill-holes that reach the footwall of the thrust system (no motion).

Column 6- Restore distance is the sum of present-day distance and displacement of the thrust sheets.

Column 7- Pinch-out distance error: this error is the sum of the uncertainty (5km) on the present-day position of the drill hole and of the cross-section restoration procedure error. The uncertainty about the present-day position of the southern margin of the basin is also indicated on the first line. We choose to present the error this way because the comparison between two drill-holes on the same cross-section of the basin is not affected by this major uncertainty.

Column 8 and 9- Thickness of the lowermost Tertiary lithostratigraphic unit in the drill-hole and origin of the data.

Column 10- Thickness of the nearest entire section (top and bottom boundary defined) of the lowermost Tertiary lithostratigraphic unit of the considered drill-hole.

Column 11- Nearest magnetostratigraphic studies (name in column 11, age from data repository 1 and location from Fig. 1) used to estimate the age of the Siwalik units boundary.

Column 12- The sedimentation rate is calculated from the thickness of the nearest complete section of the unit (column10) and from the age of the lithostratigraphic boundaries of the nearest magnetostratigraphic section (column 11). (Usually column 10 and 11 are the same).

Column 13- The age of the bottom of the tertiary sediments has been estimated assuming a constant sedimentation rate (column 12) for the deposition of the lowermost unit (column 8):

Age bottom = age top of the lowermost unit in the nearest magnetostratigraphic study + $\frac{\text{thickness of the lowermost unit in the drill hole}}{\text{sedimentation rate for this unit estimated in a close section}}$

Mugnier 3

Column 14- Time error (My). The incertainty is calculated as the sum of the uncertainty on 1) the age of the top of the lowermost unit and 2) the uncertainty on the ratio thickness / sedimentation rate.

The uncertainty on the age of the top of the lowermost unit is due to the error on the age estimate and to the diachronism of facies change. The error on the age estimate of the error in the paleomagnetic studies will be considered in the order of 0.5 Ma. For the base of the pre-siwalik, the uncertainty is greater, in the order of 2 Ma. The total error due to the diachronism is the sum of the diachronism transversal to the chain and the "local" diachronism due to basin evolution parallel to the chain. Local diachronism is in the order of 2 Ma (Brozovic and Burbank, 2000). Assuming that we use a facies change as a time line in a cylindrical model of foreland basin, it is found that diachronism transversal to the chain is proportional to the distance and time is always over-estimated. We consider that the maximum error would be 5 Ma for the whole width of the basin and evolves linearly:

 $\Delta t_{\min us} = \frac{5Ma}{ba \sin width} \Delta x + 2Ma + 0.5Ma$, with Δx the distance between the drill-hole and the reference section

2) The uncertainty on the ratio thickness/sedimentation is mainly due to the estimate of the sedimentation rate. Assuming that the subsidence of the basin is controlled by a steady-state flexure, sedimentation rate is over-estimated, and the age is under-estimated. Taking into account the small angle approximation and assuming that the slope of the flexed lithosphere could vary from 2° to 4°, the maximum error on the sedimentation rate

is 50%. Assuming that the error increases linearly, it is found that $\Delta t_{plus} = \frac{50\%}{ba \sin width} \times \frac{Thickness}{sedrate} \times \Delta x + 2Ma + 0.5Ma$

Column 15- The pinch-out migration rate is estimated in cross-sections perpendicular to the structural trend of Himalaya by dividing the distance between the drill-holes and the present-day south boundary of the basin (column 6) by the age of the sediments at the bottom of the foreland basin (column 13).

1	2	3	4	5	6	7	8	9	10	11	12	13	1	4	15
Ref.	Full name	Present	Displacement	Origin of	Restore	Pinch-	Thickness of the	Origin of the	Thickness of the	Reference	Sedimentation	Estimated	Tiı	me	Migration
on		day	(km)	the	pinch-	out	Lithostratigraphic	log	lithostratigraphic	section	rate of the basal	Age	eri	or	rate
Fig.1		distance		shortening	out	distance	units		unit in a	for the age	lithostratigraphic	of the	(M	ly)	(km/My)
		from			distance	error	at the base		reference section		unit in the	base of			
		edge			(km)	(km)					reference section	Tertiary			
		-									(m/My)	sediments	+	-	
												(Ma)			
	Southern														0
Sm	margin	0	Р	-	0	50						0	0,0	0,0	
				Personal											
				balancing											
				of											
				Srinivasan											
				and Khar,											
				1996, Fig.			2280 m lower	Acharyya and	600 m						
Su	Suruinsar	201	6	20A	207	10	Dharm.	Ray, 1982	(Chimnum)	Chimnum	200	28	4,0	4,0	7

														Mug	nier 4
								Lyon-Caen and							
								Molnar, 1985							
								(IFOM Karupakan and							
							280 m middle	Rao 1979	1190 m (Samba-	Samba-					
Zi	Zira	55	Р	-	55	5	Siw.	Sastri, 1979)	Mansar)	Mansar	298	7	2.8	5.2	8
						-		Lyon-Caen and					_,.	- ,-	
								Molnar, 1985							
								(from							
								Karunakan and							
A d	Adammun	120	D		122	5	120 m lower Sire	Rao, 1979;	500m (Van 200)	Vanana	502	11	2.5	2.1	12
Au	Adampur	152	P	- Personnal	152	5	120 III lower Siw.	Sasuri, 1979)	500m (Kangra)	Kangra	525	11	2,3	5,1	12
				balancing											
				of											
				Raiverman											
				et al., 1994			860 m lower	Srinivasan and	600 m						
Nu	Nurpur	201	7	Fig.5	208	10	Dharm.	Khar, 1996	(Chimnum)	Chimnum	200	21	4,0	4,0	10
								Srinivasan and							
							750 m lower	Powers et al							
Ho	Hosiarpur	155	Р	-	155	5	Siw.	1998	550 m (Jawa)	Jawa	483	12	2.5	2.6	13
						-		Powers et al.,					7-		-
								1998 (Also							
								Mukhopadhyay							
				Powers et		_	760m upper	and Mishra,	1380 m						
Jn2	Janauri 2	175	F	al., 1998	175	5	Dharm.	1999)	(Chimnum)	Chimnum	329	15	2,8	4,0	12
Bh	Bahl	204	10	Powers et	214	10	1210 m lower		600 m (Chimnum)	Chimnum	200	23	4.0	4.0	0
DII	Iawalamukhi	204	10	Powers et	214	10	2350 m lower	Srinivasan and	(Cillinum)	Cinininum	200	23	4,0	4,0	,
Jw-B	(JMI-B)	214	10	al., 1998	224	10	Dharm.	Khar, 1996	(Chimnum)	Chimnum	200	28	3.0	3.0	8
			-	Powers et			950 m lower	Powers et al.,	600 m			-	- / -	- / -	
Jw	Jawalamukhi	211	10	al., 1998	221	10	Darhm.	1998	(Chimnum)	Chimnum	200	22	4,0	4,0	10
	Changar			Mishra,			710 m lower	Srinivasan and	600 m						
Ch	Talai	198	15	2001	213	10	Dharm.	Khar, 1996	(Chimnum)	Chimnum	200	21	4,0	4,0	10
Der	Domooter	202	20	Mishra,	240	15	base lower	Acharyya and	no thi-1	Kumahatti-		27	4.0	4.0	0
кт	Kamsanar Haritalyangar	202	38	2001 Mishra	240	15	base lower Siw	кау, 1982	no tnickness	Inanan	-	21	4,0	4,0	9
На	(outcron)	188	4	2001	192	10	(unconf.)	Pascoe 1964	no thickness	Chimnum	-	13	2.5	2.5	15
	(outerop)	100		2001	.,_	10	(4.1.00111.)	Srinivasan and	ing unrenness	Chiningin		10	2,5	_,_	
Sa	Saharanpur	154	Р	_	154	5	400 m lower Siw.	Khar, 1996	550 m (Jawa)	Jawa	483	12	2,5	2,4	13
								Raiverman et							
								al., 1994;							
								Bhatnagar,							
ML¥	Mohand (Dece Sire)	214	Б	Powers et	214	5	900 1 C'	1994; Powers	550 m (Iama)	T	492	10	2.4	2.5	17
MUU.	(Base Siw)	214	Г	al., 1998	214	3	out m lower SiW.	Raiverman et	550 m (Jawa)	Jawa	483	12	2,4	2,5	1/
								al., 1994;							
	Mohand							Bhatnagar,							
	(Base			Powers et			153 m lower	1994; Powers	600 m						
Mh	tertiary)	214	F	al., 1998	214	5	Dharm.	et al., 1998	(Chimnum)	Chimnum	200	18	4,0	4,0	12
Li	Liskot (Less.	238	52	Srivastava	290	18	base lower	Srinivasan and	No thickness	Swat area	-	28	4,0	4,0	10

Mugnier 5

	Him.			and Mitra,			Dharm. (Dumri)	Khar, 1996;		+				Ŭ	
	outcrop)			1994				Valdiya, 1980		Kumahatti- Nahan					
								Lyon-Caen and							
								(From							
								Karunakan and							
							250 m middle	Rao, 1979;	1450 m						
Ka	Kasganj	83	Р	-	83	5	Siw.	Sastri, 1979)	(Puranpur)	Karnali	259	5	2.8	4,7	17
		110	D		110	_	500 111 0	Srinivasan and	1450m	77 1	250		2.0	2.0	10
Uj	Ujhani	112	P	-	112	5	500 middle Siw.	Khar, 1996	(Puranpur)	Karnali	259	6	2,9	3,8	19
								Molnar 1985							
								(From							
								Karunakan and							
			_				1090 m middle	Rao, 1979;	1450 m						. –
Ti	Tihar	155	Р	-	155	5	Siw.	Sastri, 1979)	(Puranpur)	Karnali	259	8	3,0	3,6	15
Sh	Shahiahannur	161	р	_	161	5	300m lower Siw	Srinivasan and Khar 1996	2000 m (Karnali)	Karnali	317	10	26	35	15
511	Shanjahanpu	101	1	_	101	5	Soom lower Stw.	Srinivasan and	(Raman)	Kaman	517	10	2,0	5,5	15
								Khar, 1996;							
	Puranpur-2							Bhatnagar,	2000 m						
Pu*	(Base Siw)	227	Р	-	227	5	470 m lower Siw.	1994	(Karnali)	Karnali	317	11	2,5	2,3	21
	D 0							Srinivasan and							
	Puranpur-2						190 m Dhorm	Khar, 1996;							
Pu	(Dase tertiary)	227	Р	-	227	5	below unconf.	1994	1000 m (Swat)	Swat	238	17	2.5	2.3	14
	Karnali				/	-							_,.	-,-	
	(Less. Him.			Mugnier et			base lower	Sakai et al.,							
Kl	Outcrop)	301	40	al., 2004	341	18	Dharm. (Dumri)	1999	No thickness	Swat area	-	26	4,0	4,0	13
		105	D		105	_	1300 m lower	Srinivasan and	1250 (0)		100	10	0.7	2.1	17
Mo	Motera Rapti (Loss	195	P		195	5	S1W.	Knar, 1996	1350 m (Surai)	Surai	422	13	2,7	3,1	15
	Him			Mugnier et			base lower	Sakai et al							
Rp	Outcrop)	306	55	al., 2004	361	18	Dharm. (Dumri)	1999	No thickness	Swat area	-	26	4,0	4,0	14
	1/						2000 m lower	Srinivasan and						,	
Ga	Gandak	248	Р	-	248	5	Siw.	Khar, 1996	2000m (Arung)	Arung	417	14	2,5	2,5	18
								Shukla and							
								Chakravorty,							
							1410 m lower	Bhatnagar							
Gn	Ganauli	258	Р	-	258	5	Siw.	1994	2000 m (Arung)	Arung	417	13	2,5	2,5	20
								Shukla and					1		
					-		1150 m lower	Chakravorty,							_
Kd	Kadmaha	266	Р	-	266	5	Siw.	1994	2000 m (Arung)	Arung	417	12	2,5	2,4	22
Po	Dovoul	220	D		220	5	1200 m lower	Srinivasan and	2000 m (Amma)	Aming	417	12	27	2.1	19
ка	Raxaui	220	r	-	220	5	SIW.	Sriniyasan and	2000 III (Arung)	Arung	41/	12	2,1	3,1	10
Ma	Madghubani	192	Р	_	192	5	850 m lower Siw.	Khar. 1996	1400 m (Bakaia)	Bakaia	378	10	2.8	3.7	19
	Bagmati		-	Lavé and	-/-	-		,	(()				_,,,		
	(Pre-terti.			Avouac,			1600 m lower	Shresta and							
Ba	outcrop)	246	18	2000	264	15	Siw.	Sharma, 1996	1400 m (Bakaia)	Bakaia	378	12	2,4	2,6	22

Mugnier 6

						1						1	1		
							950 m middle	Srinivasan and	1350 m						
Pr	Purnea	161	Р	-	161	5	Siw.	Khar, 1996	(Bakaia+Rato)	Bak.+ Rato	287	7	2,9	3,9	24
									4600 m						
Bi	Biratnagar	170	Р	-	170	5	3300 m Siw.	Bashyal, 1998	(Bakaia+Rato)	Bak.+ Rato	400	8	3,4	3,6	21
	Pinch-out							Shukla and							
	middle 2							Chakravorty,							
Fig2A	Siw.	44	Р	-	44	5	base upper Siw.	1994		Karnali		4	2,5	2,5	11
	Pinch-out														
	middle 1						base middle1	Raiverman et							
Fig2A	Siw.	160	Р	-	160	5	Siw.	al., 1994		Karnali		7	2,5	2,5	24
	Pinch-out							Raiverman et							
Fig2A	lower Siw.	185	Р	-	185	5	base middle Siw.	al., 1994		Karnali		10	2,5	2,5	19
	.Pinch-out														
	highest														
	Daharmsala							Raiverman et		Swat and					
Fig2A	(no erosion)	270	Р	-	270	5	base lower Siw.	al., 1994		Karnali		15	2,5	2,5	18
	Present-day								1000 m						
	leading edge						345 m upper		(Swat)		238				
	Upper						Dharm.								
	Dharm						(estimation of the	Raiverman et							
Fig2A	(erosion)	248	Р	-	248	5	erosion)	al., 1994		Swat		17	2,5	2,5	15
	Present-day						300 m Lower		1000 m						
	leading edge						Dharm.		(Swat)		238				
	lower Dharm						(estimation of the	Raiverman et							
Fig2A	(erosion)	224	Р	-	224	5	erosion)	al., 1994		Swat		18	2,5	2,5	12

Table DR3: Shortening rate estimate through the central Himalaya

Location	Method	Reference	Age (Ma)	Total	Shortening	Shortening	Time
				shortenin	rate	error (km)	error
				g (km)	(mm/yr)		(Ma)
		De Celles et al.,					
Tibet to plain	Synthesis	2002	25	500	20	100	3
		De Celles et al.,					
far western	Line length	2002 (from De					
Nepal	balancing	Celles et al., 2001)	21	418	20	80	3
		De Celles et al.,					
		2002 (from					
Kumaon	Line length	Srivastava et Mitra,					
cross-section	balancing	1994)	20	390	20	80	3
Western							
Nepal cross-	Area						
section	balancing	Mugnier et al., 2004	11	205	19	40	1,5
Siwalik West							
Nepal cross-	Line length						
section	balancing	Mugnier et al., 2004	2,7	39	14	6	0,3
Siwalik							
central Nepal	Uplifted	Lavé and Avouac,					
cross-section	terraces	2000	0,009	0,197	22	0,01	0,00005
Basal							
detachment							
western							
Nepal	GPS	Mugnier et al., 2004	5E-06	0,0001	20	0,00006	0