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1. ADDITIONAL INFORMATION ABOUT FRACTAL ANALYSIS 

A fractal is an ‘object’ whose shape is irregular and/or fragmented at all scales. 

Mathematically, a fractal is defined as a set for which the Hausdorff-Besicovich dimension (or fractal 

dimension D) strictly exceeds the Euclidean dimension, DE, which is always an integer (see 

Mandelbrot, 1982 for details). For instance the value of D for a fractal curve (i.e. an extremely 

convoluted curve with many gulfs at all scales) lying on a 2D plane, lies between the value of DE for 

the straight line, which is unity, and the dimension of the plane, that is two. A basic property of 

fractals is their ‘scaling’ behaviour (or self-similarity). Self-similarity implies that every part of the 

object is a reduced version of the whole. Two classes of fractals exist: ‘mathematical’ and ‘natural’ 

fractals. In mathematical fractals, their self-similarity property is assumed to hold good for the entire 

spectrum of time or space scales. In natural fractals, which are encountered in Nature and which are 

the concern of our study, small- and large-scale constraints usually confine the self-similarity 

property to a finite range of scales. Fractal natural structures are quantified by measuring their fractal 

dimension (D), a measure of their degree of complexity. In details, the fractal dimension increases as 

the complexity of the structure increases. There are several methods to measure fractal dimension of 

natural structures and most of them are implemented into computer codes that allow fast and accurate 

fractal dimension estimates (e.g. Perugini, 2002). 

One of the most used technique to measure fractals dimension of structures on digital images, 

such as the mafic/felsic magma interfaces considered in this study, is known as the box-counting 

method. Before applying this technique, grayscale pictures (Fig. DR1A) need to be converted to 

binary black and white images. This is done by thresholding grey scale images, to produce images in 

which mafic and felsic magmas are replaced by black and white, respectively (Fig. DR1B). Then, the 

interface between the two magmas is detected by image analysis by tracing the contact between the 

black and white pixels in the image (Fig. DR1C) and the box-counting technique can be performed.  
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Figure DR1. Procedure used to measure fractal dimension (Dbox) of mafic felsic interfaces. A) original grayscale image; B) image in A 

reduced to a binary black and white image by applying a threshold level; C-E) box-counting method: a square mesh of various sizes 

(r1, r2, etc.) is laid over image, and number of boxes (Nr) containing black pixels associated with interface between fluids is counted; F) 

fractal dimension (Dbox), calculated by linear interpolation of log(r) vs. log(Nr) graph; slope of linear interpolation is equal to -Dbox. The 

fractal nature of the structures is demonstrated by the excellent linear fitting of data (r2 always larger than 0.95; e.g. Bruno et al., 1994). 

Note the good fractal scaling over more than one order of magnitude. 

 

A square mesh of size (r) is laid over the image and the number of boxes (Nr) containing the black 

pixels associated with the interface between magmas is counted (Fig. DR1C-E). Mandelbrot (1982) 

showed that, for fractal patterns, the following relationship is satisfied: 
boxD

r rN −=        (1) 

Using logarithms, (1) may also be written as follows: 
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)()( rlogDNlog boxr ⋅−=        (2) 

This relationship shows that in order to classify a structure as a fractal data must lay on a 

straight line in the log-log plot where the fractal dimension (Dbox) is calculated as the slope resulting 

from the linear interpolation of the log(r) vs. log(Nr) graph.  

Fig. DR1F shows an example of log-log plot for an interface separating the mafic and felsic 

magma and shows that data points follow a linear distribution as evidenced by the very high value of 

r2 (=0.999) of the linear fitting, demonstrating that interfaces are fractals. In average 30 different 

meshes with different size (r) are utilized for measuring Dbox of each structure and this allows us to 

appreciate a very good fractal scaling over more than one order of magnitude. 

Regarding the goodness of the linear fitting, it is to note that r2 values are higher than 0.95 

(Bruno et al., 1994) for all analyzed interfaces and this demonstrates that mafic/felsic interfaces 

considered in this study are to be considered as natural fractals. All fractal dimension measurements 

have been performed by the software MorphoUt 1.0 (Perugini, 2002). This software has been 

extensively tested on structures with known fractal dimension and results are found to be very 

accurate [see Perugini (2002) for details]. 

 
2. ERRORS ON Dbox OF NATURAL STRUCTURES 

The uncertainty of Dbox due to the reduction of the original grayscale images to black and 

white images has been checked by performing several measurements of fractal dimension on binary 

images of the same structure obtained at different threshold levels. The graph of Fig. DR2 shows the 

variation of fractal dimension with the threshold level (in grey values). To understand the graph we 

must recall that the mafic magma is dark colored (lower grey values) whereas the felsic magma tends 

to be clear colored (higher grey values; Fig. DR1A and Fig. 1 in the main text). When a threshold 

level is applied to digital images all grey values below this threshold will be reduced to the black 

color, whereas all grey values above the threshold will be reduced to the white color (Fig. DR1B). 

The graph of Fig. DR2 indicates that for a large range of threshold levels (from 45 to 180 grey value), 

the fractal dimension of the interface between magmas shows very little variation leading to fractal 

dimension estimates with an error better than 0.5%. This happens because the color contrast between 

the mafic and felsic magmas is very strong and this allows us to separate very well the interface 

between magmas for a large range of thresholds. For grey values lower than 45 and higher than 180 

fractal dimension strongly fluctuates. This is due to the fact that below 45 and above 180 the images 
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suffer the interference of grey values that do not constitute the mafic/felsic interface and, therefore, 

the interface cannot be traced precisely. All values of fractal dimension presented in our study are 

measured in the range of threshold values where D shows very little variations (errors better than 

0.5%).  

 
Figure DR2. Variation of fractal dimension as a function of the threshold level. 

 

3. ERRORS ON Dbox OF SIMULATED STRUCTURES 

Tests have been performed to check the reproducibility of Dbox by performing five 

experiments at the same viscosity ratio; results show that Dbox can be estimated with an error better 

than 0.05%. 

Tests have been also performed to check the dependence of Dbox values on the injection rate 

of the low-viscosity fluid. Experiments have been performed with injection rates from 0.5 to 2.5 

mL/s; results indicate that, in the investigated range of injection rates, Dbox can be estimated with an 

error better than 1.0%. 

 

4. COMPARISON BETWEEN NATURAL AND EXPERIMENTAL STRUCTURES 

A further aspect that is worth discussing is the comparison between fractal dimensions of 

natural and experimental structures. In fact, while natural structures are sections of 3D morphologies, 

experimental structures are the result of 2D experiments. 

To our knowledge there are not viscous fingering experiments in 3D and up to now the 2D 

experiments are the only method to study this complex phenomenon. It is important to note that 2D 
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experiments are commonly conceived as proxies for 2D sections of 3D structures (e.g.Vicseck, 1992) 

and, as such, they are utilised in our study. However one may ask how the fractal dimension of 

natural structures measured on planar sections is related to the fractal dimension of the whole 3D 

structure. In particular, problems may arise if the fractal dimension from different sections of the 

same 3D structure are different. Since 3D viscous fingering experiments are not available at present 

to solve this problem, we can discuss this issue only theoretically by taking into account the additive 

properties of codimensions of intersections (Mandelbrot, 1982). Specifically, from a topological 

point of view, if S1 and S2 are two independent sets embedded in a space of dimension d, and if 

codimension(S1)+codimension(S2)<d, the codimension of S1∩S2 is the sum of the codimensions of S1 

and S2. For a fractal set F embedded in a 3D space and intersected by a plane, the above statements 

implies that the dimension of the intersected set is one less that the dimension of F. In practice, if, for 

instance, the fractal dimension  of a 3D structure (Ds) is 2.45, the fractal dimension of all possible 

intersections (DI) will be DI =2.45-1=1.45. This demonstrates that different sections of the same 3D 

structure have the same fractal dimension and that a single section fully characterises the studied 3D 

structure. Therefore, from a theoretical point of view, the comparison of fractal dimensions measured 

on 2D natural structures and structures resulting from 2D experiments is justified. 

It is important to note that although these considerations have not been proven for real viscous 

fingering structures, they have been experimentally proven for turbulent jets (e.g. Sreenivasan et al., 

1989), indicating their applicability to real world problems and supporting our approach to compare 

experimental and natural viscous fingering fractal dimensions.  
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