DR2005002 Flowers et al.

CLOSURE TEMPERATURES OF ACCESSORY MINERALS

The range of Pb diffusivity in accessory minerals provides the opportunity to reconstruct detailed thermal histories using the U-Pb isotopic system. Closure temperature (Tc) is a function of diffusivity, cooling rate, and effective diffusion radius (Dodson, 1973), and can be constrained by experimental and field-based empirical studies. The estimates below are ranges for typical diffusion radii (25-100 µm) and cooling rates (1-100 °C/m.y.). Zircon and monazite with high Tc > 1000 °C (Cherniak and Watson, 2001; Cherniak et al., 2004) are widely used to determine the timing of intrusive and metamorphic events. Titanite is increasingly recognized as a useful geochronometer because it is reactive mineral that readily grows during metamorphism (Frost et al., 2000; Aleinikoff et al., 2002), with closure temperature of 600-650 °C constrained by both experimental and field-based studies (e.g. Cherniak; 1993; Verts et al., 1996). In contrast with these minerals that commonly grow below their closure temperatures, the U-Pb systematics of apatite and rutile are typically dominated by volume diffusion (e.g. Mezger 1989; Chamberlain and Bowring, 2000). Experimental and field studies of apatite provide consistent closure temperature constraints of 450-500 °C (e.g. Cherniak et al. 1991; Krogstad and Walker, 1994; Chamberlain and Bowring, 2000). Field estimates for closure temperature in rutile are 400-450 °C (Mezger, 1989), with somewhat higher experimental determinations (Cherniak, 2000).

ANALYTICAL METHODS

Mineral separation was carried out using standard crushing, water table, magnetic, and heavy-liquid techniques, with subsequent hand-picking of single and multigrain fractions. Titanite, apatite, and rutile grains were ultrasonically washed in high-purity water or ethanol and rinsed in acetone, followed by a second washing in high-purity water and rinsing with double-distilled acetone. Selected rutile fractions were abraded without pyrite and washed briefly with dilute HNO₃. Sample spiking with a mixture of ²⁰⁵Pb-²³³U-²³⁵U was followed by dissolution in 29*M* HF (titanite, rutile) or 12*M* HCl (apatite), conversion to 6*M* HCl, and chemical separation of U and Pb using HBr-HCl anion-exchange chemistry. Pb and U analyses were carried out on the Massachusetts Institute of Technology VG Sector 54 mass spectrometer. Pb isotopic ratios were measured by peak jumping using an axial ion-counting Daly detector or dynamically with Faraday cups and the Daly detector. U was measured as an oxide in static mode on three Faraday cups. Details regarding isotopic ratio corrections are provided in Table DR1¹.

The incorporation of significant common Pb of uncertain isotopic composition into apatite and rutile during crystallization, resulting in low ratios of radiogenic Pb to common Pb, is a particularly acute problem for U-Pb age determination in young, less radiogenic samples. Initial common Pb compositions of apatite and rutile were corrected by using the Pb isotopic composition of leached coexisting feldspar (Table DR2¹). Titanite data were corrected by using the isotopic composition of feldspars in a Western Fiordland Orthogneiss granulite (F03-61). Feldspar Pb isotopic determination was accomplished by handpicking 1–3 mg plagioclase fractions, sequentially leaching separates with 7M HNO₃, 6M HCl, and 1M HF, separating Pb using HBr anion-exchange chemistry, and statically analyzing Pb in four Faraday cups. Ultimately, the 206 Pb/ 238 U dates calculated using the initial common Pb composition of coexisting leached feldspars differed little from those calculated using the standard method of correcting with the Stacey-Kramers (1975) model for terrestrial Pb evolution. The maximum effect was on an apatite fraction characterized by the lowest radiogenic Pb to common Pb ratio of the dataset (sample F03-1, analysis a1, Pb*/Pbc = 0.1). The date calculated using coexisting leached feldspars for the initial common Pb composition was 3.7 m.y. younger than the date calculated using the Stacey-Kramers model. In contrast, the effect on the rutile dates (sample F03-61) was ≤ 0.15 m.y.

REFERENCES CITED

- Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., and Dorais, M.J., 2002, U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study: Chemical Geology, v. 188, p. 125-147.
- Chamberlain, K.R., and Bowring, S.A., 2000, Apatite-feldspar U-Pb thermochronometer: A reliable, mid-range (~450°C), diffusion-controlled system: Chemical Geology, v. 172, p. 73-200.
- Cherniak, D.J., 1993, Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport: Chemical Geology, v. 110, p. 177-194.

Cherniak, D.J., 2000, Pb diffusion in rutile: Contributions to Mineralogy and Petrology, v. 139, p. 198-207.

Cherniak, D.J., Lanford, W.A., and Ryerson, F.J., 1991, Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques: Geochimica et Cosmochimica Acta, v. 55, p. 1663-1673.

Cherniak, D.J., and Watson, E.B., 2001, Pb diffusion in zircon: Chemical Geology, v. 172,

p. 5-24.

- Cherniak, D.J., Watson, E.B., Grove, M., and Harrison, T.M., 2004, Pb diffusion in monazite: A combined RBS/SIMS study: Geochimica et Cosmochimica Acta, v. 68, p. 829-840.
- Dodson, M.H., 1973, Closure temperature in cooling geochronological and petrological systems: Contributions to Mineralogy and Petrology, v. 40, p. 259-274.
- Frost, B.R., Chamberlain, K.R., and Schumacher, J.C., 2000, Sphene (titanite): phase relations and role as a geochronometer: Chemical Geology, v. 172, p. 131-148.
- Hanson, G.N., Catanzaro, E.J., and Anderson, D.H., 1971, U-Pb ages for sphene in a contact metamorphic zone: Earth and Planetary Science Letters, v. 12, p. 231-237.
- Krogstad, E.J. and Walker, R.J., 1994, Higher closure temperatures of the U-Pb system in large apatites from the Tin Mountain pegmatite, Black Hills, South Dakota, USA: Geochimica et Cosmochimica Acta, v. 58, p. 3845-3853.
- Mezger, K., Hanson, G.N., and Bohlen, S.R., 1989, High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes: Earth

and Planetary Science Letters, v. 96, p. 106-118.

Stacey, J.S. and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, p. 207-221. Verts, L.A., Chamberlain, K.R., and Frost, C.D., 1996, U-Pb sphene dating of contact metamorphism: the importance of sphene growth in the contact aureole of the Red Mountain pluton, Laramie Mountains, Wyoming: Contributions to Mineralogy and Petrology, v. 125, pl. 186-199.

Figure DR1. U-Pb concordia diagrams showing (A) F03-72 titanite, (B) F03-76 titanite, and (C) P69120 titanite.

Figure DR1 Flowers et al.

Table DR1.	U-Pb	isotopic da	ta for titanite,	apatite,	and rutile
------------	------	-------------	------------------	----------	------------

	Composition							Isotopic Ratios						Dates (Ma)					
		Wt	U	Pb	<u>Th</u> ^c	<u>Pb*</u> ₫	Pbc ^d	²⁰⁶ Pb ^e	$\frac{208}{Pb}$	$\frac{206}{Pb}$		$\frac{207}{Pb^{t}}$		$\frac{207}{Pb}$		²⁰⁶ <u>Pb</u> ^h	²⁰⁷ Pb ^h	$\frac{207}{\text{Pb}}^{\text{h}}$	corr.
Fr	# ^a	(µg) ^b	(ppm)	(ppm)	U	Pbc	(pg)	²⁰⁴ Pb	²⁰⁶ Pb	²³⁸ U	% err ^g	²³⁵ U	% err ^g	²⁰⁶ Pb	% err ^g	²³⁸ U	²³⁵ U	²⁰⁶ Pb	coef.
F0	3-55:	Calcsi	licate gn	eiss, D	oubtfu	l Soun	d (B43,	2040221	E, 5523	713N) ¹ (P6	9539)'- y	ellow, fla	t, metam	orphic titar	nite ^k				
t1	4	70	463.3	11.1	1.5	22.2	33.9	1089.6	0.483	0.01755	(.08)	0.11703	(.11)	0.04838	(.07)	112.1	112.4	117.6	0.761
t2	4	30	681.2	15.1	1.1	21.2	20.5	1140.3	0.350	0.01760	(.07)	0.11735	(.10)	0.04836	(.07)	112.5	112.7	117.1	0.692
t4	1	8	563.6	12.4	0.8	7.5	12.3	442.0	0.269	0.01750	(.19)	0.11608	(.35)	0.04811	(.28)	111.8	111.5	104.8	0.587
t5	8	15	369.9	8.2	0.7	5.6	18.5	343.2	0.235	0.01739	(.16)	0.11589	(.40)	0.04834	(.35)	111.1	111.3	116.0	0.491
t6	1	8	281.5	7.7	1.9	7.7	7.4	364.0	0.605	0.01764	(.36)	0.11748	(.49)	0.04831	(.31)	112.7	112.8	114.4	0.775
t7	6	6	287.2	6.6	1.1	6.2	5.8	351.2	0.342	0.01738	(.48)	0.11609	(.59)	0.04845	(.33)	111.1	111.5	121.5	0.832
F0	3-590	C: Base	ment gn	eiss, Do	oubtfu	l Sound	d (B43,	2041815	E, 5521	723N) (P69	9543) - b	rown, anh	edral tita	nite					
t1	6	54	109.3	3.1	1.7	5.1	28.0	256.8	0.537	0.01767	(.14)	0.11799	(.27)	0.04844	(.22)	112.9	113.3	120.6	0.583
t3	10	28	105.2	3.4	1.5	2.3	29.8	129.2	0.482	0.01754	(.26)	0.11701	(.64)	0.04839	(.56)	112.1	112.4	118.4	0.494
t4	3	30	77.6	2.4	2.0	4.5	13.4	215.9	0.655	0.01775	(.34)	0.11840	(.58)	0.04837	(.44)	113.4	113.6	117.3	0.642
t5	12	18	292.9	8.5	1.8	5.8	22.7	280.5	0.592	0.01765	(.16)	0.11782	(.25)	0.04842	(.19)	112.8	113.1	119.7	0.658
F0	3-61:	Wester	m Fiord	land Or	thogn	eiss gra	inulite,	Doubtful	Sound ((B43, 2041)	326E, 55	19055N)	(P69549)	- dark red	, tabular,	euhedra	l rutile		
r1	6	112	14.6	0.3	0.0	0.8	22.4	72.4	0.000	0.01152	(.69)	0.07597	(1.31)	0.04782	(1.06)	73.9	74.4	90.2	0.586
r4	3	255	12.7	0.3	0.0	0.9	34.9	81.8	0.000	0.01071	(.35)	0.07113	(.89)	0.04816	(.79)	68. 7	69.8	107.0	0.484
r5	4a	300	9.4	0.2	0.0	1.0	26.4	89.8	-0.001	0.01040	(.41)	0.06797	(.75)	0.04741	(.60)	66.7	66.8	69.8	0.609
r6	6a	135	23.2	0.4	0.0	1.2	23.9	104.5	-0.001	0.01026	(.81)	0.06718	(1.09)	0.04749	(.69)	65.8	66.0	73.9	0.772
F0	3-72:	Calcsi	licate, ea	st of D	oubtfu	ıl Soun	d (C43,	2055994	4E, 5507	278N) (P6	9562) - y	ellowish-	brown tit	anite					
tl	1	95	94.2	10.1	2.5	3.3	224.4	145.5	0.854	0.04991	(.06)	0.36624	(.26)	0.05322	(.25)	310.6	313.1	331.7	0.407
t2	3	54	105.3	12.1	3.0	3.4	147.0	141.8	1.011	0.04992	(.07)	0.36644	(.29)	0.05324	(.27)	311.1	314.6	340.4	0.418
t3	6	33	118.4	13.2	3.5	6.1	61.7	218.4	1.197	0.04945	(.09)	0.36321	(.29)	0.05327	(.26)	314.0	316.9	338.2	0.443
t4	7	23	70.3	10.0	4.2	2.8	59.9	102.3	1.434	0.04936	(.17)	0.36118	(.56)	0.05307	(.51)	314.0	317.0	339.0	0.450
F0	3-76:	Biotite	granite,	, east of	f Doub	otful So	und (C	43, 2063	139E, 55	505134N) (P69565)	- dark bro	wn titani	te					
t1	1	165	31.8	2.6	7.8	2.7	114.8	75.1	2.508	0.01937	(.13)	0.13080	(.68)	0.04897	(.64)	123.7	124.8	146.3	0.421
t3	1	145	9.3	0.8	2.3	0.5	81.7	38.4	0.769	0.01869	(.33)	0.13003	(4.11)	0.05045	(4.05)	119.4	124.1	215.9	0.217
t4	8	60	12.7	1.4	5.1	0.6	54.2	35.4	1.662	0.01857	(.53)	0.12650	(2.52)	0.04942	(2.34)	118.6	120.9	167.7	0.425
t5	1	245	34.9	2.6	3.9	1.1	303.8	52.9	1.262	0.01904	(.16)	0.12921	(1.59)	0.04922	(1.50)	121.6	123.4	158.5	0.596
t6	1	280	28.5	2.2	5.6	1.5	254.0	56.7	1.810	0.01899	(.10)	0.12833	(.98)	0.04901	(.93)	121.3	122.6	148.3	0.550

	Table DR1. (continued)																		
			Co	mpositi	on		Isotopic Ratios Dates (Ma)										a)		
		Wt	U	Pb	<u>Th</u> ^c	<u>Pb*ª</u>	Pbc ^a	²⁰⁶ <u>Pb</u> ^e	$\frac{208}{Pb}$	²⁰⁶ Pb ^r		$\frac{207}{Pb}$		^{20/} Pb ^r		²⁰⁶ Pb ^h	²⁰⁷ <u>Pb</u> ^h	$\frac{207}{Pb}^{h}$	corr.
Fr	# ^a	_(µg) ^b	(ppm)	(ppm)	U	Pbc	(pg)	²⁰⁴ Pb	²⁰⁶ Pb	²³⁸ U	% err ^g	²³⁵ U	% err ^g	²⁰⁶ Pb	% err ^g	²³⁸ U	²³⁵ U	²⁰⁶ Pb	coef.
OU	14912	24: Maf	ic granu	ilite, M	ilford	Sound	(D40, 2	0974501	E, 55920	00N) - dark	k brown,	irregular t	itanite						
tl	1	145	79.2	6.0	2.4	0.6	538.4	44.2	0.751	0.01877	(.10)	0.12362	(1.39)	0.04776	(1.34)	119.9	118.3	87.5	0.602
t2	1	145	66.5	3.9	1.2	0.7	340.0	52.7	0.379	0.01881	(.09)	0.12781	(.92)	0.04927	(.88)	120.1	122.1	160.9	0.560
t3	1	70	65.3	3.9	1.6	0.7	161.6	52.5	0.531	0.01874	(.14)	0.12699	(1.21)	0.04915	(1.15)	119.7	121.4	155.0	0.501
t4	1	70	49.2	4.2	2.3	0.5	197.0	39.5	0.768	0.01865	(.18)	0.12831	(1.93)	0.04990	(1.83)	119.1	122.6	190.4	0.589
P69	9120	: Calcsi	licate gi	neiss, C	aswel	l Sound	l (B41, 2	2048747	'E, 55602	266N) - ligl	ht brown	titanite	. ,		. ,				
t1	1	13	46.6	2.0	1.1	1.1	12.8	77.5	0.352	0.02024	(1.00)	0.13622	(1.38)	0.04882	(.90)	129.2	129.7	139.1	0.756
t2	1	17	49.0	4.0	0.5	1.2	31.5	91.3	0.175	0.04293	(.34)	0.31062	(.64)	0.05247	(.51)	271.0	274.7	306.0	0.596
t3	2	23	29.2	2.0	1.2	0.9	24.7	66.1	0.404	0.02732	(.60)	0.19210	(1.07)	0.05100	(.84)	173.8	178.4	240.7	0.623
t4	2	23	33.3	2.3	0.2	0.7	31.4	65.8	0.120	0.03024	(.48)	0.21797	(1.32)	0.05229	(1.17)	192.0	200.2	297.9	0.477
F03	3-1A	: Darrar	n Compl	lex dior	ite, ea	st of M	ilford S	ound (D	40, 2114	889E, 559	1239N) (P69478)	. ,		· /				
al	13	115	6.2	2.2	2.8	0.1	226.8	22.8	0.996	0.02033	(.45)	0.15018	(6.94)	0.05357	(6.58)	129.8	142.1	352.9	0.820
a2	11	125	9.8	2.3	2.5	0.2	254.7	24.6	0.934	0.01949	(.33)	0.15113	(4.75)	0.05625	(4.48)	124.4	142.9	462.4	0.810
a3	13	75	8.2	2.1	2.7	0.2	135.1	24.5	0.925	0.02001	(.43)	0.14520	(5.46)	0.05262	(5.16)	127.7	137.7	312.5	0.699
a4	13	46	15.9	3.8	2.8	0.2	153.7	24.7	0.914	0.02002	(.42)	0.14001	(5.83)	0.05073	(5.52)	127.8	133.1	228.5	0.755
<u>a5</u>	14	50	8.1	2.1	2.7	0.2	90.5	24.4	1.000	0.02021	(.63)	0.15618	(7.51)	0.05604	(7.11)	129.0	147.4	454.2	0.658

^a Number of grains in fraction, a indicates the fraction was abraded

^b Sample weights were estimated to within 40% using measured grain dimensions and a nominal density of 3.5 g/cm³ for titanite, 3.2 g/cm³ for apatite, and 4.2 g/cm³ for rutile.

^c Th contents calculated from radiogenic ²⁰⁸Pb and the ²⁰⁷Pb/²⁰⁶Pb date of the sample, assuming concordance between U-Th-Pb systems.

^d Pb* and Pbc represent radiogenic Pb and common Pb respectively.

^e Measured ratio corrected for fractionation and spike contribution; Pb fractionation was $0.12 \pm 0.04\%/a.m.u.$ for Faraday detector or $0.2 \pm 0.04\%/a.m.u.$ for Daly detector analysis, based on daily analysis of NBS-981.

^t Measured ratios corrected for fractionation, spike, blank, and initial common Pb; nominal U blank = 0.1 pg \pm 50% (2s); nominal Pb blank = 2.0 pg \pm 50% for titanite, apatite and rutile (2s) or where lower, the total common Pb of the analysis \pm 10% (2s); measured laboratory Pb composition:

 206 Pb/ 204 Pb = 19.10, 207 Pb/ 204 Pb = 15.72, 208 Pb/ 204 Pb = 38.65 ± 0.01 (2s); initial Pb composition from leached feldspars.

^g Numbers in parentheses are the % errors reported at the 2s confidence interval, propagated using the algorithms of Ludwig (1980).

^h Isotopic ages calculated using the decay constants of Jaffey et al. (1971): $l_{235}^{(235}U) = 9.8485 \times 10^{-10} \text{ yr}^{-1}$ and $l_{238}^{(238}U) = 1.55125 \times 10^{-10} \text{ yr}^{-1}$; error in ${}^{207}Pb/{}^{206}Pb$ date reported at the 2s confidence interval. Dates in bold are the best age estimates.

'UTM coordinates for each sample given in New Zealand map grid reference

¹ For samples with a second sample number, a similar, but not identical, sample from the same outcrop is available through the NZ PETLAB database. ^kDescription of analyzed grains

Table DR2. Pb isotopic composition of

complo ^a	<u>reaction refuspar separates</u>										
sampte	wt (mg)	²⁰⁴ Pb	²⁰⁴ Pb	²⁰⁴ Pb							
F03-61: V	WFO										
Fsp1	2.30	18.669	15.604	38.508							
Fsp2	1.40	18.666	15.608	38.496							
F03-1A:	Darran Cor	nplex									
Fsp1	1.70	18.662	15.624	38.455							
Fsp2	1.60	18.622	15.621	38.404							
^a Least ra	diogenic le	ach from e	each feldsr	oar fraction							

^b Standard error on analyses is less than 0.033.

Pb fractionation is $0.12 \pm 0.04\%$ /a.m.u. for Faraday detector based on daily analysis of NBS-981.