DR2004114

Hoernle et al., p. 1

Sample No	$\frac{1}{10} \text{ Magg} = \frac{39}{39} \text{ metrors from the five oyu formula, c}$						1_
Sample No	WIASS	Ar / Ar_m	±	Ισ	Ar/Ar_m	±	Ισ
	(mg)						
AN3 hasalt glass (SDA)						
AN3_60	0 000	$7.421E_{-03}$	+	$2.3E_{-0.4}$	1 352E-03	+	1 1E-04
AN3-62	0.070	6 268E-03	+	2.3E-04 8.2E-05	1.552E-05	+	4 4E-05
AN3-63	0.170	4 184F-03	+	0.2E-05 4 2E-05	2 274E-03	+	3.4E-05
AN3-64	0.237	4 241E-03	+	4.2E-05	2.27 HE 03	+	2.9E-05
AN3-65	0.330	2.847E-03	+	1.2E 05	2.207E 03	+	1.7E-05
AN3-66	0.366	5.852E-03	±	4.3E-05	1.840E-03	±	2.0E-05
AN3-67	0.392	8 642E-03	±	7.2E-05	1 117E-03	±	3.5E-05
AN3-68	0.685	7.448E-03	±	3.7E-05	1.430E-03	±	2.0E-05
	0.000	,		0.72 00	1.1202.02		2.02.00
$^{39}Ar_{K}/^{40}Ar^{*}$		1.305E-02	±	1.5E-04			
Isochron age (Ma)		132.9	±	1.5			
Initial ⁴⁰ Ar/ ³⁶ Ar		300.4	±	2.4	MSWD	=	0.3
AN8 basalt glass (SPA)						4 05 04
AN8-39	0.044	7.201E-03	±	2.4E-04	1.376E-03	±	1.8E-04
AN8-40	0.136	8.276E-03	±	1.2E-04	1.180E-03	±	5.2E-05
AN8-41	0.143	1.652E-03	±	1.2E-05	2.919E-03	±	2.2E-05
AN8-42	0.201	3.408E-03	±	2.5E-05	2.44/E-03	±	2.3E-05
AN8-43	0.230	8.575E-03	±	9.5E-05	9.755E-04	±	5.5E-05
AN8-44	0.288	6.364E-03	±	6.4E-05	1.634E-03	±	3.0E-05
AN8-45	0.369	9.344E-03	±	8./E-05	7.983E-04	±	2.9E-05
AN8-46	0.552	8.589E-03	±	3./E-05	1.065E-03	±	1.9E-05
$^{39}\text{Ar}_{\text{K}}/^{40}\text{Ar}^{*}$		1.245E-02	±	9.1E-05			
Isochron age (Ma)		139.1	±	1.1			
Initial ⁴⁰ Ar/ ³⁶ Ar		296.9	±	2.1	MSWD	=	1.05
AN10 basalt glass	(SPA)						
AN10-75	0.060	1.070E-03	±	2.9E-05	3.067E-03	±	2.6E-05
AN10-76	0.107	7.043E-03	±	1.4E-04	1.472E-03	±	7.8E-05
AN10-77	0.228	8.689E-03	±	1.3E-04	1.101E-03	±	5.1E-05
AN10-78	0.220	6.823E-03	±	1.9E-04	1.565E-03	±	7.7E-05
AN10-79	0.361	9.240E-03	±	8.0E-05	8.476E-04	±	3.3E-05
AN10-80	0.415	1.686E-03	±	9.7E-06	2.901E-03	±	1.0E-05
AN10-81	0.881	3.838E-03	±	1.5E-05	2.336E-03	±	1.2E-05
AN10-82	0.253	2.112E-03	±	8.2E-06	2.737E-03	±	1.7E-05
AN10-84	0.287	3.315E-03	±	2.8E-05	2.458E-03	±	1.2E-05
$^{39}\Delta r_{\rm v}/^{40}\Delta r^{*}$		1 258E-02	+	1 3E-04			
Isochron age (Ma)		137.6	+	1.51-04			
Initial ⁴⁰ Ar/ ³⁶ Ar		200 3	+	1.0	MSWD	=	1 68
		277.5	_				

Appendix Table DR1: ⁴⁰Ar/³⁹Ar analysis data from fresh basaltic glasses and pillow interiors from the Nicoya Peninsula, Costa Rica.

glasses and pillow interiors from the Nicoya Peninsula, Costa Rica.										
Sample No	e No Mass		±	1σ	$^{36}\mathrm{Ar}/^{40}\mathrm{Ar}_{\mathrm{m}}$	±	1σ			
-	(mg)									
AN34 basalt glass	(SPA)									
AN34-1	0.508	4.506E-03	\pm	2.9E-05	2.274E-03	±	2.0E-05			
AN34-2	0.077	1.262E-02	±	9.9E-04	2.189E-04	±	4.5E-04			
AN34-3	0.214	1.102E-03	±	1.3E-05	3.072E-03	±	1.5E-05			
AN34-4	0.122	1.195E-02	±	4.2E-04	7.175E-04	±	1.8E-04			
AN34-5	0.172	3.875E-03	\pm	6.7E-05	2.432E-03	±	6.0E-05			
AN34-6	0.503	5.086E-03	\pm	2.8E-05	2.202E-03	±	1.9E-05			
AN34-7	0.355	1.031E-02	±	1.2E-04	9.717E-04	±	4.9E-05			
AN34-8	0.664	8.855E-03	±	5.6E-05	1.290E-03	±	2.4E-05			
AN34-9	0.297	9.713E-03	±	1.1E-04	1.088E-03	±	4.1E-05			
AN34-10	0.349	3.285E-03	±	3.0E-05	2.560E-03	±	2.9E-05			
$^{39}Ar_{\rm K}/^{40}Ar^{*}$		1.454E-02	±	1.3E-04						
Isochron age (Ma)		119.4	±	1.1						
Initial ⁴⁰ Ar/ ³⁶ Ar		300.6	±	1.4	MSWD	=	0.85			
AN40 basalt glass	(SPA)									
AN40-22	0.105	6.220E-03	±	2.0E-04	1.903E-03	±	8.4E-05			
AN40-24	0.255	3.043E-03	±	3.1E-05	2.735E-03	±	2.4E-05			
AN40-25	0.227	5.287E-03	±	5.4E-05	2.208E-03	±	3.5E-05			
AN40-26 ⁽⁻⁾	0.314	5.828E-03	±	4.2E-05	2.220E-03	±	3.1E-05			
AN40-27	0.418	9.313E-03	±	1.2E-04	1.298E-03	±	3.6E-05			
AN40-28	0.605	1.802E-03	±	9.6E-06	2.999E-03	±	7.0E-06			
AN40-29	0.589	2.416E-03	±	1.0E-05	2.863E-03	±	1.2E-05			
AN40-30	0.367	6.923E-03	±	7.0E-05	1.747E-03	±	2.7E-05			
AN40-31	0.265	5.972E-03	±	7.7E-05	2.060E-03	±	3.2E-05			
$^{39}\Delta r_{}/^{40}\Delta r^{*}$		1 511F-02	+	1 7E-04						
Incharge and (Ma)		110.2		1.7						
Isochron age (Ma)		118.2	±	1.8						
Initial ⁴⁰ Ar/ ³⁰ Ar		292.3	±	1.1	MSWD	=	1.55			
BN22 basalt matri	ix (SPA)									
BN22-116	0.191	3.827E-03	±	5.2E-05	2.719E-03	±	3.7E-05			
BN22-142	0.176	3.228E-03	±	6.1E-05	2.737E-03	±	7.9E-05			
BN22-143	0.213	8.853E-03	±	9.0E-05	1.543E-03	±	4.2E-05			
BN22-144	0.128	8.499E-03	±	1.4E-04	1.471E-03	±	6.3E-05			
BN22-145	0.215	4.759E-03	±	5.9E-05	2.485E-03	±	5.6E-05			
BN22-150	0.676	1.026E-02	±	2.9E-05	1.196E-03	±	6.1E-06			
BN22-151	0.909	8.135E-03	±	2.3E-05	1.663E-03	±	1.6E-05			
BN22-11	0.073	3.999E-03	±	5.8E-05	2.629E-03	±	4.6E-05			
BN22-12	0.179	1.590E-03	±	1.1E-04	3.132E-03	±	1.3E-04			
BN22-13	0.389	1.676E-03	±	1.1E-05	3.032E-03	±	1.5E-05			
BN22-14	0.145	1.459E-03	±	2.4E-05	3.137E-03	±	3.5E-05			
BN22-15	0.463	1.462E-03	±	6.9E-06	3.091E-03	±	1.4E-05			
$^{39}Ar_{\rm K}/^{40}Ar^{*}$		1.581E-02	±	6.2E-05						
Isochron age (Ma)		110.6	±	0.9						
Initial ⁴⁰ Ar/ ³⁶ Ar		292.7	±	1.6	MSWD	=	2.67			

Appendix Table DR1: ⁴⁰Ar/³⁹Ar analysis data from fresh basaltic glasses and pillow interiors from the Nicoya Peninsula, Costa Rica.

glasses and pillow interiors from the Nicoya Peninsula, Costa Rica.										
Sample No	30 A r	³⁹ Ar/ ⁴⁰ Ar	+	1σ	³⁶ Ar/ ⁴⁰ Ar	+	10			
Sample No	JJAI	m	Т	10	m	т	10			
Laser power	fraction									
(W)	naction									
AN34 basalt glas	ss (IHA)									
0.15	0.004	2.49E-05	±	3.09E-06	3.38E-03	±	1.24E-05			
0.15	0.015	5.65E-05	±	2.35E-06	3.34E-03	±	1.10E-05			
0.25	0.039	5.48E-05	±	1.36E-06	3.33E-03	±	1.30E-05			
0.5	0.042	7.51E-05	±	1.08E-05	3.24E-03	±	2.52E-05			
0.5	0.078	9.33E-05	±	1.03E-06	3.32E-03	±	1.39E-05			
0.0	0.124	1.61E-04	±	2.68E-06	3.30E-03	±	1.39E-05			
0.8	0.176	2.09E-04	±	3.10E-06	3.28E-03	±	9.59E-06			
0.0	0.224	3.27E-04	±	4.55E-06	3.30E-03	±	1.71E-05			
1.0	0.285	5.03E-04	±	4.71E-06	3.23E-03	±	2.11E-05			
1.0	0.340	6.09E-04	±	7.46E-06	3.24E-03	±	1.53E-05			
1.1	0.423	7.58E-04	±	7.83E-06	3.21E-03	±	1.56E-05			
1.35	0.512	7.79E-04	±	8.26E-06	3.26E-03	±	2.87E-05			
1.50	0.591	7.16E-04	±	5.87E-06	3.26E-03	±	1.82E-05			
2	0.711	1.01E-03	±	5.67E-06	3.15E-03	±	2.11E-05			
- 3	0.811	6.65E-04	±	5.22E-06	3.22E-03	±	1.45E-05			
5	0.912	6.97E-04	±	4.22E-06	3.19E-03	±	1.44E-05			
10	0.996	1.57E-03	±	1.17E-05	3.05E-03	±	2.77E-05			
20	0.998	7.94E-04	±	1.06E-04	2.76E-03	±	2.41E-04			
25	0.999	5.06E-04	±	9.03E-05	2.53E-03	±	3.72E-04			
25 ^(f)	1.000	1.24E-03	±	4.66E-04	1.26E-03	±	8.76E-04			
Plateau steps		0.9-3 W								
Plateau 39Ar frac	tion	64%								
Plateau age		118	±	5 Ma	MSWD	=	1.6			
AN10 basalt glas	ss (IHA)									
0.15	0.008	6.63E-05	±	3.02E-06	3.36E-03	±	1.85E-05			
0.25	0.027	1.93E-04	+	3.06E-06	3.37E-03	+	2.29E-05			
0.25	0.081	3.01E-04	+	1.33E-06	3.32E-03	+	9.12E-06			
0.5	0.158	5.81E-04	+	2.71E-06	3.22E-03	+	9.22E-06			
0.6	0.246	9.39E-04	+	5.84E-06	3.11E-03	+	2.41E-05			
0.0	0.327	1.13E-03	+	5.42E-06	3.08E-03	+	1.83E-05			
0.8	0.402	1.36E-03	+	7.83E-06	3.03E-03	+	2.43E-05			
0.9 ⁽⁻⁾	0.474	1.33E-03	+	9.95E-06	2.95E-03	+	2.02E-05			
1.0	0.545	1.43E-03		7.89E-06	2.99E-03		2.11E-05			
1.0	0.608	1.73E-03	+	1.47E-05	2.95E-03	+	1.71E-05			
1.1	0.664	1.89E-03		1.76E-05	2.83E-03		2.50E-05			
1.35 ⁽⁻⁾	0.722	2.05E-03	±	1.82E-05	2.92E-03	±	3.33E-05			
1.50	0.780	2.17E-03	+	1.86E-05	2.80E-03	+	2.13E-05			
2	0.852	1.75E-03		1.47E-05	2.97E-03		1.85E-05			
3	0.914	1.61E-03	+	1.23E-05	2.95E-03	+	2.40E-05			
5	0.953	2.38E-03	±	3.18E-05	2.78E-03	±	6.27E-05			
10	0.996	2.19E-03	±	2.47E-05	2.74E-03	±	4.62E-05			
20	1.000	2.21E-03	±	2.16E-04	2.91E-03	±	3.76E-04			
25	1.000	-2.89E-03	±	6.26E-03	-1.09E-02	±	3.03E-02			
25 ^(f)	1.000	-5.93E-03	±	1.76E-02	9.26E-03	±	2.23E-02			
Distance stars		0 4 25 117								
Plateau steps	d	0.4-25 W								
Plateau 39Ar frac	cuon	/9%		2.14	Manne		17			
Plateau age		137	±	2 Ma	MSWD	=	1./			

Appendix Table DR1: ⁴⁰Ar/³⁹Ar analysis data from fresh basaltic glasses and pillow interiors from the Nicoya Peninsula, Costa Rica.

Table Captions Appendix DR1: Single-particle total fusion (SPA) and incremental heating (IHA) ³⁹Ar/⁴⁰Ar analysis data. Irradiations at the GKSS Research Center (Geesthacht, FRG). ³⁹Ar/⁴⁰Ar analyses at IFM-GEOMAR (MAP-216 mass spectrometer / 25W Spectra Physics Ar-ion laser). Irradiation monitor = Taylor Creek Rhyolite Sanidine (TCs = 27.92 Ma from Duffield and Dalrymple, 1990). Fully automated analysis series. Ar isotope ratios are corrected for mass discrimination, contributions from system blanks, and interfering neutron reactions on Ca and K. ³⁹Ar/⁴⁰Ar_m ratios scaled to J = 1.0E-03 (measured J = 1.04E-3 ± 3E-6). Isochrons are least-squares-fitted with correlated errors (York, 1969). MSWD = Mean Square Weighted Deviates (Sum of Squares / N-2). Missing numbers reflect failed total fusion experiments (partial fusions, jumped mineral grains, mass 40 signal beyond linear amplifier range) not considered. ^(f) Final fusion with focused laser beam.

Additional CLIP age data sources used in Fig. 2C are Alvarado et al. (1997); Christie et al., 1992; Hauff et al. (2000a); Hoernle et al. (2002); Kerr et al. (1997, 2002); Lapierre et al. (1999); Révillon et al. (2000); and Sinton et al. (1996, 1997, 1998); White et al. (1993).

Additional References not in manuscript:

- Alvarado, G.E., Denyer, P., and Sinton, C.W., 1997, The 89 Ma Tortugal komatiitic suite, Costa Rica: Implications for a common geological origin in the Caribbean and eastern Pacific region from a mantle plume: Geology, v. 25, p. 439-442.
- Christie, D.M., Duncan, R.A., McBirney, A.R., Richards, M.A., White, W.M., Harpp, K.S., and Fox, C.G., 1992, Drowned islands downstream from the Galapagos hotspot imply extended speciation times: Nature, v. 355, p. 246-248.
- Duffield, W.A., and Dalrymple, G.B., 1990, The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows: Bulletin Volcanology, v. 52, p. 475-487.
- Kerr, A.C., Tarney, J., Kempton P.D., Spadea, P., Nivia, A., Marriner, G.F., Duncan, R.A., 2002, Pervasive mantle plume head heterogeneity: Evidence from the late Cretaceous Caribbean-Colombian oceanic plateau: Journal of Geophysical Research, v. 107, no. B7, p. ECV 2-1 - 2-13, doi:10.1029/2001JB000790, 2002.
- Lapierre, H., Dupuis, V., Mercier de Lepinay, B., Bosch, D., Monie, P., Tardy, M., Maury, R.C., Hernandez, J., Polve, M., Yeghicheyan, D., Cotton, J., 1999, Late Jurassic oceanic crust and Upper Cretaceous Caribbean plateau picritic basalts exposed in the Duarte igneous complex, Hispaniola: Journal of Geology, v. 107, p. 193-207.
- Sinton, W.C., Christie, D.M., and Duncan, R.A., 1996, Geochronology of Galápagos seamounts: Journal Geophysical Research, v. 101, p. 13689-13700.
- White, W.M., McBirney, A.R., and Duncan, R.A., 1993, Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume: Journal Geophysical Research, v. 98, p. 19533-19563.
- York, D., 1969, Least squares fitting of a straight line with correlated errors: Earth Planetary Science Letters, v. 5, p. 320-324.

Sample material	AN3 ⁽¹⁾ glass	AN6 glass	AN7 ⁽¹⁾ glass	AN7b glass	AN8 glass	AN10 glass	AN10b glass	AN20 glass	AN34 glass	AN40 ⁽¹⁾ glass	BN22 ⁽²⁾ whole rock
Major elements (wt %)											
SiO ₂	50.67	50.11	49.86	49.84	50.41	50.22	50.42	50.01	52.31	51.92	49.02
TiO ₂	1.63	2.78	2.69	2.86	1.67	1.66	1.73	2.77	1.15	1.30	1.26
Al_2O_3	13.40	12.59	12.54	12.57	13.45	13.42	13.56	12.53	13.94	13.68	14.51
FeOt	13.78	16.40	16.43	16.27	13.78	13.80	13.78	16.43	11.90	12.41	11.65
MnO	0.24	0.26	0.25	0.26	0.24	0.22	0.25	0.25	0.21	0.20	0.17
MgO	6.31	4.91	4.83	4.94	6.27	6.10	6.27	4.91	6.91	6.87	7.9
CaO	10.89	9.41	9.50	9.37	10.90	10.88	10.80	9.38	11.22	11.24	12.33
Na ₂ O	2.12	2.40	2.57	2.54	2.06	2.16	2.15	2.42	1.90	1.92	2.31
K_2O	0.13	0.23	0.23	0.24	0.13	0.14	0.14	0.23	0.09	0.09	0.11
P_2O_5	0.07	0.15	0.20	0.15	0.07	0.07	0.06	0.17	0.03	0.03	0.096
SO_2	0.30	0.39	0.40	0.41	0.32	0.31	0.31	0.39	0.21	0.22	n.d.
Total	99.54	99.62	99.48	99.44	99.30	98.99	99.47	99.49	99.87	99.89	99.36

Appendix Table DR2. Major element data of pillow lavas from the Nicoya Peninsula, Costa Rica.

⁽¹⁾ and ⁽²⁾ refer to major element data from (Hauff et al., 1997) and (Hauff et al., 2000a) respectively. Major element data of the glasses were obtained using a Cameca SX 50 electron microprobe at IfM-GEOMAR (details in Hauff et al., 1997)

Sample material	AN3 glass	AN7 glass	AN10 glass	AN34 glass	AN40 glass	BN22 whole rock	BHVO-1 Standard	BIR-1 Standard
Trace elements (ppm)								
Cs	0.035	0.081	0.042	0.034	0.034	0.024	0.126	0.006
Rb	2.54	5.04	3.24	2.36	3.26	1.97	9.36	0.196
Ba	26.7	47.5	28.6	23.1	35.5	16.6	135	6.55
Sr	120	134	122	90	126	113	392	108
Zr	99.2	173.6	98.1	64.6	72.4	61.5	177	14.96
Hf	2.20	3.83	2.20	1.49	1.65	1.86	4.27	0.588
Nb	5.23	9.74	5.21	3.84	4.23	4.18	17.20	0.521
Pb	0.420	0.711	0.393	0.307	0.311	0.271	2.10	3.03
Th	0.360	0.647	0.348	0.264	0.299	0.252	1.19	0.029
U	0.125	0.209	0.120	0.086	0.094	0.088	0.422	0.012
La	4.72	8.41	4.64	3.24	3.36	3.82	15.57	0.579
Ce	12.98	22.67	12.80	8.82	9.36	10.2	38.50	2.09
Pr	2.07	3.62	2.07	1.38	1.51	1.65	5.59	0.393
Nd	10.45	17.96	10.31	6.98	7.57	8.40	24.9	2.46
Sm	3.42	5.61	3.35	2.36	2.56	2.79	6.20	1.13
Eu	1.28	1.92	1.26	0.90	0.93	1.10	2.09	0.559
Gd	4.27	6.85	4.21	3.07	3.29	3.77	6.39	1.80
Tb	0.776	1.23	0.767	0.581	0.617	0.665	0.944	0.362
Dy	5.15	8.01	5.08	3.93	4.14	4.42	5.283	2.60
Но	1.06	1.67	1.05	0.834	0.883	0.923	0.957	0.570
Er	3.00	4.71	2.95	2.39	2.50	2.60	2.38	1.63
Tm	0.449	0.705	0.439	0.359	0.380	0.386	0.320	0.251
Yb	2.96	4.70	2.93	2.45	2.56	2.57	1.96	1.65
Lu	0.439	0.696	0.432	0.368	0.387	0.379	0.282	0.261

Appendix Table DR2. Trace element data of pillow lavas from the Nicoya Peninsula, Costa Rica.

Trace element concentrations were determined on an Agilent 7500 ICP-MS after the methods of Garbe-Schönberg (1993) at the Institute for Geosciences (Kiel University). Analytical precision of this intrument ranges between 0.2 and 1%. When compared to literature data the accuracy of BHVO-1 is generally better than 4%, except Th (10%). For BIR-1, Sr, Hf, Pb, Th and all REE except La and Ce (<7%) compare within 4% of the literature data, whereas higher deviations are observed for Rb (8%), Ba (12%) and U (21%).

Additional notes for Figure 3: Primitive mantle normalizing values for multielement diagram are from Hofmann (1988). Reference pattern for island-arc basalts (IAB) is from Elliot et al. (1997, sample GUG9); patterns for oceanic-island basalts (OIB) and normal mid-oceanic-ridge basalts (N-MORB) are from Sun and McDonough (1989).

Sample material	AN3 glass	AN7 glass	AN8 glass	AN10 glass	AN34 glass	AN40 glass	BN22 whole rock		
Sr-Nd-Pb isotope data									
⁸⁷ Rb/ ⁸⁶ Sr	0.061	0.108	0.041*	0.077	0.076	0.075	0.051		
⁸⁷ Sr/ ⁸⁶ Sr	0.703107 (8)	0.703057 (9)	0.703120 (8)	0.703123 (7)	0.703075 (8)	0.703141 (8)	0.703190 (6)		
147Sm/144Nd	0.197	0.188	0.208*	0.196	0.204	.204	0.200		
143Nd/144Nd	0.513016 (8)	0.513020	0.513017	0.513022	0.513005	0.513006 (8)	0.513019 (5)		
²³⁸ U/ ²⁰⁴ Pb	19.23	19.28	20.46	20.15	18.35	20.00	20.79		
²³² Th/ ²⁰⁴ Pb	56.47	59.26	57.63	57.58	56.84	62.55	61.67		
²⁰⁶ Pb/ ²⁰⁴ Pb	19.168 (5)	19.062 (5)	19.202 (6)	19.215 (9)	19.237 (13)	19.212 (7)	19.114 (3)		
²⁰⁷ Pb/ ²⁰⁴ Pb	15.563 (4)	15.560 (5)	15.571 (5)	15.575 (7)	15.579 (10)	15.572 (5)	15.554 (2)		
²⁰⁸ Pb/ ²⁰⁴ Pb	38.751 (11)	38.669 (11)	38.785 (12)	38.806 (18)	38.889 (27)	38.867 (14)	38.690 (6)		

Appendix Table DR2. Sr-Nd-Pb isotope data of pillow lavas from the Nicoya Peninsula, Costa Rica.

Sr-Nd-Pb isotopic ratios were determined on a Finnigan MAT262 RPQ²⁺ Thermal Ionization Mass Spectrometer (TIMS) at IFM-GEOMAR, operating in static mode for Sr and Pb and in multidynamic mode for Nd. Sr and Nd isotopic ratios are normalized within run to ⁸⁶Sr/⁸⁸Sr= 0.1194 and ¹⁴⁶Nd/¹⁴⁴Nd= 0.7219 respectively. Over the course of this study NBS 987 gave ⁸⁷Sr/⁸⁶Sr= 0.710249± 0.000022 (N=160), ¹⁴³Nd/¹⁴⁴Nd= 0.511844± 0.000011 (N=68) for La Jolla. NBS 981 (N=46) gave ²⁰⁶Pb/²⁰⁴Pb= 16.897± 0.006, ²⁰⁷Pb/²⁰⁴Pb= 15.435± 0.008, ²⁰⁸Pb/²⁰⁴Pb= 36.522± 0.024 and are corrected to the NBS 981 values given in Todt et al., (1996). Total chemistry blanks were <100 pg for Sr, Nd and Pb and thus considered negligible.

Numbers in brackets denote two sigma within run errors of isotope ratio analyses. * based on averages of other Nicoya igneous rocks from (Hauff et al., 2000a; Hauff et al., 2000b). ²³⁸U/²⁰⁴Pb and ²³²Th/²⁰⁴Pb of the fresh glasses were determined using a mixed ²⁰⁵Pb-²³⁵U-²³⁰Th spike.

Additional notes for Figure 4: Data for Galapagos Island and hotspot track field from White et al. (1993), Hoernle et al. (2000) and Werner et al. (2003). Caribbean large igneous province field (CLIP) is from Hauff et al. (1997, 2000a, 2000b) and Hoernle et al. (2002). Parent/daughter ratios for Pacific N-MORB source are from Table 6 of Janney and Castillo et al. (1997), and those for Galápagos Island lavas are from Hauff et al. (2000b).

References cited:

- Elliot, T., Plank, T., Zindler, A., White, W., and Bourdon, B., 1997, Element transport from slab to volcanic front at the Mariana arc: Journal Geophysical Research, v. 102, p. 14991-15019.
- Garbe-Schönberg, C.-D., 1993, Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standarts by ICP-MS: Geostandard Newsletter, v. 17, p. 81-97.
- Hauff, F., Hoernle, K., Schmincke, H.-U., and Werner, R., 1997, A mid Cretaceous origin for the Galápagos hotspot: Volcanological, petrological and geochemical evidence from Costa Rican oceanic crustal segments: Geologische Rundschau, v. 86, p. 141 - 155.
- Hauff F, Hoernle K, Bogaard Pvd, Alvarado GE, Garbe-Schönberg D (2000a) Age and Geochemistry of Basaltic Complexes in Western Costa Rica: Contributions to the Geotectonic Evolution of Central America. Geochemistry, Geophysics, Geosystems 1 (5), doi:10.1029/1999GC000020
- Hauff, F., Hoernle, K., Tilton, G., Graham, D., and Kerr, A.C., 2000b, Large volume recycling of oceanic lithosphere: Geochemical Evidence from the Caribbean Large Igneous Province: Earth Planetary Science Letters, v. 174, p. 247-263.
- Hoernle, K., van den Bogaard, P., Werner, R., Lissina, B., Hauff, F., Alvarado, G., and Garbe-Schönberg, D., 2002, Missing history (16-71 Ma) of the Galápagos Hotspot: Implications for the tectonic and biological evolution of the Americas: Geology, v. 30, p. 795-798.
- Hoernle, K., Werner, R., Phipps Morgan, J., Bryce, J., and Mrazek, J., 2000, Existence of a complex spatial zonation in the Galápagos plume for at least 14.5 Ma: Geology, v. 28, p. 435-438.
- Hofmann, A.W., 1988, Chemical differentiation of the Earth: the relationship between mantle, continental and oceanic crust: Earth Planetary Science Letters, v. 90, p. 297-314.
- Janney, P.E., and Castillo, P.R., 1997, Geochemistry of Mesozoic Pacific mid-ocean ridge basalt: Constraints on melt generation and the evolution of the Pacific upper mantle: Journal of Geophysical Research, v. 102, p. 5207–5229.
- Sun, S.-s., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, *in* A.D., S., and Norry, M.J., eds., Magmatism in the Ocean Basins, Volume 42: Geological Society London Special Publication: London, Blackwell, p. 313-345.
- Todt, W., Cliff, R.A., Hanser, A., and A.W., H., 1996, Evaluation of a ²⁰²Pb-²⁰⁵Pb double spike for high precision lead isotope analyses, *in* Basu, A., and Hart, S., eds., Earth Processes: Reading the isotopic code, Volume 95: Geophysical Monograph: Washington, AGU, p. 429-437.
- Werner, R., Hoernle, K., Barckhausen, U., and Hauff, F., 2003, Geodynamic evolution of the Galápagos hostspot system (Cantral East Pacific) over the past 20m.y.: Constraints from morphology, geochemistry and magnetic anomalies.: Geochemistry Geoppysics Geosystems, v. 4, no. 12, 1108, doi:10.1029/2003GC00576.
- White, W.M., McBirney, A.R., and Duncan, R.A., 1993, Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume: Journal Geophysical Research, v. 98, p. 19533-19563.