Analytical techniques

SAMPLE PREPARATION AND LA- ICP -MS ANALYTICAL INSTRUMENTATION AND PROCEDURES

Samples WR-10 and TB-1 were crushed with a jaw crusher and pulverised with a disc mill. Zircons were separated at the Complutense University of Madrid by heavy fraction enrichment on a Wilfley table followed by density separation using di-iodomethane (CH_2I_2) and magnetic separation in a Frantz isodynamic separator. Zircons were selected from the least magnetic fraction and hand-picked in alcohol under a binocular microscope. Zircon grains representing all sizes (except those whose breadth was shorter than *c*. 20μ m) and morphological types present in both samples were selected for LA-ICP-MS analyses. Grains were set in synthetic resin mounts, polished to approximately half their thickness and cleaned in a warm HNO₃ ultrasonic bath. Analytical instrumentation consisted of a UP213 frequency quintupled Nd:YAG based laser ablation system (NewWave Research, Fremont, USA) coupled to a (Thermo Elemental) PQ3, quadrupole based ICP-MS instrument with enhanced sensitivity (S-Option) interface. Instrument and operating parameters used for individual zircon analyses are as given in Jeffries et al. (2003).

Samples and standard were ablated in an air-tight sample chamber flushed with Helium for sample transport. The laser was focused on the sample surface and energy density was kept constant for each analysis. The samples were rastered along lines ca. 30 to 60 microns long (depending on zircon size), using a constant raster speed for each analysis. Nominal beam diameter was $30\mu m$ for zircon analyses of sample WR-10 but all zircons from sample TB-1 were analysed with a nominal beam diameter of $18\mu m$ owing to their small size.

Data were collected in discrete runs of 20 analyses, comprising 12 unknowns bracketed before and after by 4 analyses of the standard zircon 91500

(Wiedenbeck et al. 1995). During the analytical sessions of samples WR-10 and TB-1 the standard 91500 yielded a weighted mean (n=56) of 1062.3 \pm 1.9 Ma (MSWD =1.2) for the ²⁰⁶Pb/²³⁸U age (certified ID-TIMS ²⁰⁶Pb/²³⁸U age: 1062.4 \pm 0.4 Ma) and a weighted mean of 1065.3 \pm 2 Ma (MSWD = 0.6) for the ²⁰⁷Pb/²⁰⁶Pb age (certified ID-TIMS ²⁰⁷Pb/²⁰⁶Pb age: 1065.4 \pm 0.3 Ma).

Data for sample zircons were collected for up to 150 s per analysis with a gas background taken during the initial ca. 60 s. For each analysis, time-resolved signals were obtained and then examined to ensure that stable flat signal intervals (free from inclusions, core-rim features, zones of high common Pb or evidence of fractionation) were used in the age calculations. Preliminary selection of background and analysis signal intensities and data calculation was performed using 'LAMTRACE', a macro based spreadsheet written by Simon Jackson, Macquarie University, Australia. Background and mass bias corrected signal intensities and counting statistics were calculated for each isotope. Concordia age calculations, and concordia and cumulative probability plots were performed using Isoplot/Ex rev. 2.49 (Ludwig, 2001). Data treatment, assignment of final ages and errors for individual analyses, estimation of common Pb and criteria for rejection of analyses are those detailed in Jeffries et al. (2003).

Common Pb. The ages reported in Table 1 are not common-lead corrected as ²⁰⁴Pb measurements are rendered useless by the isobaric interference from Hg, a contaminant present in the argon supply gas. ²⁰⁴Hg interferes on ²⁰⁴Pb and the ²⁰²Hg peak is too small to allow a reliable overlap correction of acceptable precision. The ²⁰⁸Pb correction method (Compston et al. 1984, Ludwig 2001) cannot be applied reliably to all U-Pb analyses as the assumption of concordance between the radiogenic ²⁰⁶Pb/²³⁸U and ²⁰⁸Pb/²³²Th ratios is not always justified. This is particularly obvious in U-Pb dating of detrital zircon populations where only one analysis per grain is obtained and extrapolations on

the behaviour of the U-Th-Pb system cannot be applied as for instance in the case of U-Th-Pb dating of cogenetic magmatic zircons.

Andersen (2002) has proposed a common lead correction method that neither uses ²⁰⁴Pb nor assumes concordance, but relies instead on the assumption of coherent behaviour of the U-Pb and Th-Pb systems during Pb loss. Application of this correction algorithm revealed significant common lead content (i.e. age correction outside analytical error) in 6 discordant analyses. These analyses have been rejected and are not reported in Table 1. In addition, examination of the time-integrated U-Pb, Th-Pb and Pb-Pb isotope ratio plots allows the identification of analyses (or parts of an analysis) that contain significant amounts of common lead (e.g. Fernández-Suárez et al. 2002; Jeffries et al., 2003) and consequently either the whole analysis is rejected or the corresponding segment of the signal containing common Pb is not used in the age reported in Table 1 is well below total analytical uncertainty.

To date, we have no knowledge of any ICP-MS system/analytical protocol that can measure 204Pb in zircon with enough precision to allow a reliable and accurate correction. It is accepted by most U-Pb geochronologists that most zircons contain very small amounts of common lead and that most of it resides in altered/metamict zones, inclusions, fractures, that ideally are avoided by laser ablation sampling. Therefore we argue that when faced with vanishingly small amounts of common lead, the lack of 204Pb correction is not more inaccurate than the nearly inevitable over-correction derived from inaccurately measured 204Pb. As we show in the Jeffries et al. (2003) paper, a careful examination of the time-integrated isotope ratio plots will allow the analyst to detect zones of unusual high common Pb whose corresponding signal intervals are never used for age calculation. Our experience shows that the approach of very stringent signal selection/rejection guarantees that the effect of small amounts of common Pb does not affect the accuracy of analyses beyond their reported

uncertainty. This latter point has been confirmed in many instances by analyses of zircons previously dated by ID-TIMS.

We must also state that in our analyses, most derived ages are based on the more robust 206Pb/238U ratios as they are concordant. It is only in the oldest (pre-Mesoproterozoic) discordant zircons (Table 1) that we report 207Pb/206Pb ages, and even in these cases the analyses are less than 10% discordant. Moreover, these analyses are the less relevant to the main geological issue addressed in this article.

The ages labelled as "*reported age*" in Table 1 are calculated as follows: For concordant analyses (ages whose corresponding isotope ratios have a 2σ error ellipse that, to a greater or lesser extent, overlaps the concordia curve) we report concordia ages and errors as defined by Ludwig (1998). For normally discordant analyses we report the ²⁰⁷Pb/²⁰⁶Pb age and 2σ error. In cases where the error on the ²⁰⁷Pb/²⁰⁶Pb ratio is large owing to low ²⁰⁷Pb or very short collection times (very small zircons) the error reported corresponds to the upper intercept of a discordia forced through 0 Ma. For slightly reversely discordant zircons younger than ca 900 Ma and whose ²⁰⁷Pb/²⁰⁶Pb ages have large errors owing to small amounts of ²⁰⁷Pb we use the more precise ²⁰⁶Pb/²³⁸U age and corresponding 2σ error.

Further comments on analytical procedures:

1) Standard and sample are not mounted together in the same block as this would be wasteful of a standard in short supply, but the sample block and standard block are mounted together in the ablation cell. In our experience and with our analytical set up and protocol (described in Jeffries et al. 2003) there is no fractionation effect in moving between blocks already within the ablation cell just as there is none in moving from one side of a block to another. Concerning standardisation, we have opted for run standard

bracketing having found that the mass bias drift on our quadrupole instrument is insignificant during the course of a run and so there is no gain in using sample standard bracketing.

- 2) The uncertainties reported represent 2 sigma internal errors. In provenance studies, where the final goal is not one age but the statistical distribution of age clusters, we feel that propagating all sources of uncertainty simply produces larger uncertainties that finally make many data technically concordant (giving a false sense of security) owing only to the large resulting errors. We feel that 2 sigma internal errors alone give a better understanding of concordance of the U-Pb system. Particularly in this type of study, where it is the presence/absence and relative proportion of given age groups that provides the scientific arguments, the error propagation approach has no bearing on the conclusions. Full error propagation should be done when aiming at dating crystallisation of plutonic rocks, eruption of volcanic rocks or metamorphic events.
- 3) Signal interval selection. Signal interval selection is based on a careful and stringent examination of isotope ratio plots versus time. In this fashion, phenomena such as zones of high common Pb, fractures, inclusions, U-Pb elemental fractionation, inherited radiogenic lead, inconsistent behaviour of the Th-Pb and U-Pb systems are easily detected. Therefore the signal selected is not arbitrary but always the only interval that is free of suspect features. The practise of automatically matching signal intervals in standard and unknown may be required in cases where the laboratory opts for stationary spot analyses and then this becomes a necessity to correct for elemental fractionation. In our case, using line rasters and the analytical parameters and instrument conditions reported in Jeffries et al. (2003), we do not have detectable U-Pb elemental fractionation and therefore there is no reason to use matching intervals in sample and standard. That would lead in many cases to selection of parts of analysis that have any of the above suspect features.

References cited:

- Anderson, T. (2002). Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb. Chemical Geology, 192, 59-79.
- Compston, W., Williams, I.S., Meyer, C. (1984). U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high-mass resolution ion microprobe. Journal of Geophysical Research, 89, 525-534.
- Fernández-Suárez, J., Gutiérrez-Alonso, G., Jeffries, T.E. (2002). The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth Planet.Sci. Lett. 204, 75-88.
- Jeffries, T., Fernández-Suárez, J., Corfu, F., Gutiérrez-Alonso, G (2003). Advances in U-Pb geochronology using a frequency quintupled Nd:YAG based laser ablation system (lambda= 213nm) and quadrupole based ICP-MS. J. Anal. At. Spectrom., 18, 847-855.
- Ludwig KR (1998) On the treatment of concordant uranium-lead ages. Geochim. Cosmochim. Acta, 62, 665-676.
- Ludwig K.R. (2001). Isoplot/Ex version 2.49. Berkeley Geochronology Center Special Publication No. 1^a, 55pp.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Orbeli, F., von Quadt, A., Roddick J.C., Spiegel, W. (1995). Three natural zircon

standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19, 1-23.

Sample		Isoto	ratios and	(%) errors	Ages and 2 σ absolute errors (Ma)						Reported Age					
TB-1														[see text for	or deta	ils]
Anal. #	i.s. [s]	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Age (Ma)	±2σ	disc %
														Dep. Age:	Early	Devonian
fe06a05	29	0.0621	1.06	0.4588	2.36	0.0536	1.64	388	4	383	8	352	36	388	4	-10.2
fe06a15	35	0.0632	1.72	0.4852	2.30	0.0557	2.04	395	7	402	8	438	46	397	6	9.8
fe06a08	27	0.0710	2.38	0.5515	3.08	0.0563	3.58	442	10	446	11	462	80	444	8	4.3
fe06a16	19	0.0845	2.70	0.6760	2.82	0.0580	3.94	523	14	524	12	528	86	524	10	0.9
fe06c07	33	0.0857	2.40	0.7121	5.00	0.0603	5.26	530	12	546	21	612	114	533	11	13.4
fe06a12	19	0.0877	2.16	0.7134	1.94	0.0590	1.64	542	11	547	8	564	36	547	8	3.9
fe06c15	59	0.0981	1.28	0.8063	1.48	0.0596	1.64	603	7	600	7	588	34	602	6	-2.6
fe06c16	23	0.1005	3.24	0.8169	4.48	0.0590	3.06	617	19	606	20	564	68	613	18	-9.4
fe06b16	34	0.1004	2.12	0.8370	4.68	0.0604	4.04	617	12	617	22	618	88	617	12	0.2
fe06b07	27	0.1014	1.36	0.8580	1.78	0.0613	1.90	623	8	629	8	650	40	626	7	4.2
fe06c05	56	0.1032	1.68	0.8598	1.90	0.0604	0.94	633	10	630	9	618	22	630	9	-2.4
fe06b11	25	0.1037	1.16	0.8888	1.76	0.0621	2.32	636	7	646	8	678	50	678	50	6.2
fe06c06	46	0.1003	1.84	0.8687	2.52	0.0628	2.24	616	11	635	12	700	48	700	48	12.0
fe06a11	21	0.1176	2.18	1.0559	2.86	0.0651	1.38	717	15	732	15	776	30	776	30	7.6
fe06b05	19	0.1371	1.54	1.2550	1.44	0.0664	1.56	828	12	826	8	818	32	826	8	-1.2
fe06a06	50	0.1723	1.62	1.7179	1.98	0.0723	1.70	1025	15	1015	13	994	34	1018	12	-3.1
fe06a10	19	0.1797	1.92	1.8825	2.04	0.0760	1.86	1065	19	1075	14	1094	38	1073	13	2.7
fe06b14	29	0.1841	1.76	2.0090	1.78	0.0791	1.94	1089	18	1119	12	1174	38	1174	38	7.2
fe06b13	29	0.2399	2.22	3.0010	2.46	0.0907	1.48	1386	28	1408	19	1440	30	1440	30	3.8
fe06c09	33	0.2995	1.40	4.4522	1.18	0.1078	0.96	1689	21	1722	10	1762	18	1762	18	4.1
fe06c11	23	0.2881	1.54	4.3410	2.04	0.1092	2.14	1632	22	1701	17	1786	40	1786	40	8.6
fe06b10	59	0.3303	1.24	5.1952	1.66	0.1140	1.12	1840	20	1852	14	1864	20	1864	20	1.3
fe06c14	27	0.3299	1.68	5.6023	2.46	0.1231	1.42	1838	27	1916	21	2002	26	2002	26	8.2
fe06b06	21	0.3830	1.92	6.7650	2.86	0.1281	1.50	2090	34	2081	25	2070	26	2078	25	-1.0
fe06c08	50	0.3793	1.48	6.9458	1.70	0.1328	1.32	2073	26	2105	15	2134	24	2134	24	2.9
fe06c12	31	0.3746	1.68	7.0240	1.54	0.1360	0.90	2051	29	2114	14	2176	16	2176	16	5.7
fe06b09	35	0.5252	1.40	13.6647	1.62	0.1887	1.24	2721	31	2727	15	2730	20	2727	15	0.3

Table 1 (continued). LA-ICP-MS U-Pb results

i.s.= signal interval integrated for isotope-ratio and age calculation (in seconds) disc%= percent discordance calculated from ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U ages (negative values: reverse discordance)

Sample		Isoto	ratios and	(%) errors	Ages and 2 σ absolute errors (Ma) Reported Age								е			
WR-10														[see text for	or deta	ails]
Anal. #	i.s. [s]	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Age (Ma)	±2σ	disc %
														Dep. Age:	Early	Silurian
fe05a05	27	0.0880	2.48	0.7024	3.08	0.0578	2.48	544	13	540	13	522	54	542	12	-4.2
fe05d09	21	0.0877	1.40	0.7037	2.92	0.0582	3.04	542	7	541	12	536	66	542	7	-1.1
fe05c14	31	0.0885	1.38	0.7017	1.86	0.0575	2.40	547	7	540	8	508	54	547	7	-7.7
fe05c07	29	0.0881	1.84	0.7263	2.62	0.0598	2.62	544	10	554	11	594	56	548	9	8.4
fe05b16	34	0.0893	2.02	0.7208	3.50	0.0585	3.00	551	11	551	15	548	64	551	10	-0.5
fe05d08	34	0.0811	1.80	0.6577	2.24	0.0588	1.28	503	9	513	9	560	28	560	28	10.2
fe05b08	57	0.0913	2.50	0.7435	3.12	0.0591	1.56	563	13	564	13	568	34	564	13	0.9
fe05c09	31	0.0905	2.94	0.7454	2.00	0.0597	2.38	559	16	566	9	592	52	566	9	5.6
fe05d14	33	0.0925	2.04	0.7572	2.98	0.0594	2.82	570	11	572	13	580	60	571	10	1.7
fe05a16	40	0.0925	1.52	0.7612	1.82	0.0597	1.40	570	8	575	8	592	30	573	7	3.7
fe05c08	25	0.0856	2.40	0.7009	2.42	0.0594	2.48	529	12	539	10	580	54	580	54	8.8
fe05a08	17	0.0844	2.34	0.6965	2.68	0.0598	2.94	523	12	537	11	596	62	596	62	12.2
fe05b05	25	0.0983	2.44	0.8027	2.02	0.0592	1.36	604	14	598	9	574	28	596	9	-5.2
fe05a10	42	0.0972	1.48	0.8028	1.82	0.0599	1.58	598	8	598	8	598	34	598	7	0.0
fe05b11	40	0.0991	1.68	0.8196	2.42	0.0600	2.28	609	10	608	11	600	50	609	9	-1.5
fe05b14	33	0.1009	1.84	0.8386	5.18	0.0603	5.82	620	11	618	24	612	126	620	11	-1.3
fe05c10	31	0.1023	1.72	0.8752	3.38	0.0621	3.02	628	10	638	16	676	66	629	10	7.1
fe05b07	27	0.1027	2.02	0.8744	3.12	0.0617	2.52	630	12	638	15	664	54	632	12	5.1
fe05a12	33	0.1037	1.94	0.8669	2.16	0.0606	1.50	636	12	634	10	624	32	634	10	-1.9
fe05b13	40	0.1048	1.70	0.8662	3.04	0.0599	2.96	643	10	633	14	600	66	640	10	-7.2
fe05d11	27	0.1107	2.06	0.9575	1.82	0.0627	1.84	677	13	682	9	698	40	681	9	3.0
fe05b09	27	0.1367	1.72	1.2651	1.42	0.0671	2.56	826	13	830	8	840	54	830	8	1.7
fe05d12	25	0.1247	1.68	1.1533	2.48	0.0671	2.66	758	12	779	13	838	56	838	29	9.5
fe05c16	29	0.1596	1.64	1.5862	1.42	0.0721	0.96	955	15	965	9	986	18	986	18	3.1
fe05a11	40	0.1752	1.72	1.8004	1.76	0.0745	0.90	1040	17	1046	12	1054	18	1047	11	1.3
fe05a14	19	0.2032	1.78	2.2156	1.64	0.0791	1.48	1192	19	1186	11	1172	30	1186	12	-1.7
fe05a09	40	0.2045	2.28	2.2587	2.28	0.0801	1.56	1200	25	1199	16	1198	32	1200	16	-0.2
fe05a07	27	0.2049	1.50	2.3055	1.80	0.0816	1.54	1202	16	1214	13	1234	30	1211	12	2.6
fe05c12	31	0.2109	1.46	2.3/3/	1.96	0.0816	1.88	1234	16	1235	14	1234	38	1234	13	0.0
1e05015	27	0.3485	1.22	5.7528	1.18	0.1197	0.94	1927	20	1939	10	1950	16	1941	10	1.2
1005005	23	0.3566	2.06	6.1414	2.00	0.1249	0.88	1966	35	1996	1/	2026	10	2026	16	3.0
1005006	27	0.3270	2.38	5.7972	2.42	0.1285	1.16	1824	38	1946	21	2078	22	2078	22	12.2
1005012	27	0.3858	2.12	0.8431	2.14	0.1286	2.20	2103	<u>ა</u> გ	2091	19	2078	40	2092	19	-1.2
1602006	27	0.3921	2.06	7.4040	2.08	0.1369	0.76	2133	38	2161	19	2188	14	2188	14	2.5

Table 1. LA-ICP-MS U-Pb results

i.s.= signal interval integrated for isotope-ratio and age calculation (in seconds) disc%= percent discordance calculated from ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U ages (negative values: reverse discordance)