			MINERALOGY
Sample	Kimberlite	Туре	Mineralogy
KX1-1	Lace	S	gt + qz + sa + rt (sil, ky, gr, su, cor, zr, mz)
KX1-2	Lace	S	gt + sa + qz + rt (sil, ky, gr, su, cor, zr, mz)
KX1-8	Lace	S	gt + qz + sa + sil + fs + rt (ky, gr, su, cd, zr, mz)
KX2-1	Voorspoed	s	gt + fs + ky + qz + sa + rt (sil, gr, su, cor, zr, mz)
KX2-2	Voorspoed	S	gt + qz + fs + sil + ky + rt (phl, sp, gr, su, cor, zr, mz)
KX4-21	Markt	m	gt + plag + cpx + qz (rt, ap)
KX4-23	Markt	m	plag + gt + hbl + cpx + qz (mt, ap, zr)
KX4-36	Markt	m	gt + hbl + cpx + plag + qz (mt, ap, zr)
KX5-7	Lovedale	m	gt + cpx + plag + qz (mt, ap)
KX20-1	Letseng-la-Terae	S	gt + ky + plag + qz + mt + rt (ap, zr, mz)
KX20-3	Letseng-la-Terae	f	qz + gt + ky + ksp + plag + rt (mt, ap, zr, mz)
KX20-4	Letseng-la-Terae	m	gt + cpx + plag + qz (mt, ap, zr)
KX20-5	Letseng-la-Terae	f	plag + ksp + qz + gt + cpx (rt, ap, zr)
KX20-8	Letseng-la-Terae	m	plag + gt + cpx + qz + rt (ap, zr)
KX31-4	Liqhobong	m	plag + gt + cpx + phl + qz + rt (ap)

TABLE DR1. LOWER CRUSTAL GRANULITE XENOLITH DERIVATION AND MINERALOGY

*Lithologic types: s—sedimentary granulite; m—mafic granulite; f—felsic granulite.

†Mineral abbreviations: cor—corundum; fs—feldspar (plagioclase or antiperthite); gr—graphite; gt garnet; ksp—potassium feldspar; ky—kyanite; mt—magnetite (iron-titanium oxide); mz—monazite; phl titanian phlogopite; plag—plagioclase; qz—quartz; rt—rutile; sa—sapphirine; sil—sillimanite; sp—spinel; su—sulfide; zr—zircon. Minerals listed in approximate order of abundance; those in parentheses present in quantities <0.5%.

	t _m †	[Lu]	[Hf]	¹⁷⁶ Lu [§]	¹⁷⁶ Hf [§]			
Sample	(Ga)	(ppm)	(ppm)	¹⁷⁷ Hf	¹⁷⁷ Hf	±	εHf₀ [§]	εHf _m §
KX1-1 wr	2.7	0.52	3.92	0.01866	0.282024	(5)	-26.46	1.06
KX1-2 wr	2.7	0.45	3.94	0.01620	0.281842	(4)	-32.91	-0.76
KX1-2 zhf1	2.7	18	10636	0.00023	0.280971	(4)	-63.71	-1.36
KX1-2 zhf2	2.7	16	10851	0.00021	0.280977	(3)	-63.47	-1.07
KX1-8 wr	2.7	0.46	2.83	0.02313	0.282218	(3)	-19.59	-0.55
KX2-1 wr	2.7	0.42	5.55	0.01080	0.281545	(3)	-43.38	-1.01
KX2-1 zhf1	2.7	55	10161	0.00077	0.280921	(4)	-65.46	-4.14
KX2-1 zhf2	2.7	9	10590	0.00013	0.280922	(4)	-65.44	-2.89
KX2-2 wr	2.7	0.37	6.07	0.00862	0.281361	(3)	-49.90	-3.42
KX4-21 wr	1.1	0.05	0.23	0.03044	0.282875	(7)	3.63	5.74
KX4-23 wr	1.1	0.54	1.06	0.07254	0.283872	(5)	38.91	9.08
KX4-23 zhf1	1.1	608	8497	0.01016	0.282169	(5)	-21.32	-3.85
KX4-23 zhf2	1.1	541	8855	0.00868	0.282164	(4)	-21.49	-2.89
KX4-36 wr	1.1	0.18	0.73	0.03568	0.282908	(6)	4.80	2.92
KX5-7 wr	1.1	0.07	0.24	0.04107	0.283656	(8)	31.28	25.37
KX20-1 wr	1.0	1.44	5.90	0.03470	0.282786	(4)	0.50	-0.53
KX20-1 zhf1	1.0	32	10826	0.00042	0.282009	(3)	-26.98	-4.39
KX20-1 zhf2	1.0	29	9491	0.00043	0.282000	(3)	-27.32	-4.75
KX20-1 zhf3	1.0	18	5624	0.00046	0.282007	(5)	-27.06	-4.50
KX20-3 wr	1.0	0.79	9.30	0.01203	0.282177	(4)	-21.03	-6.45
KX20-4 wr	1.0	0.68	1.70	0.05664	0.283338	(5)	20.01	3.87
KX20-5 wr	1.0	0.19	4.40	0.00601	0.282062	(9)	-25.11	-6.38
KX20-5 zhf1	1.0	55	11375	0.00068	0.281972	(3)	-28.29	-5.89
KX20-5 zhf2	1.0	51	6640	0.00108	0.282004	(3)	-27.15	-5.03
KX20-8 wr	1.1	0.35	2.89	0.01709	0.282398	(4)	-13.22	-1.00
KX20-8 zhf1	1.1	582	14055	0.00588	0.282283	(3)	-17.28	3.45
KX20-8 zhf2	1.1	447	12601	0.00504	0.282281	(3)	-17.36	4.02
KX31-4 wr	1.0	0.40	3.27	0.01732	0.282454	(5)	-11.25	-0.31

TABLE DR2. Lu-Hf ISOTOPIC DATA FOR WHOLE ROCK SAMPLES AND ZIRCONS

Notes: 250-300 mg of whole rock powder (wr), or zircon fractions (zhf) comprising 1-5 hand picked grains were spiked with mixed ¹⁷⁶Lu-¹⁸⁰Hf tracer, Lu and Hf purified by standard cation, anion, and HDEHP ion chromatography, and isotope ratios and element concentrations (ppm) measured by isotope dilution multicollector ICP mass spectrometry (U. Arizona).

[†]time of high grade metamorphism determined from U-Pb zircon and monazite analysis; zircon U-Pb dates

were determined of 5% aliquots of the same solutions dissolved for Lu-Hf analysis, 2ircon 0-Pb dates and Bowring (2003a, S. Afr. J. Geol., in press; 2003b, Geol. Soc. Am. Bull. 115, 533-548). $^{\$}2\sigma$ internal error in measured $^{176}Lu/^{177}Hf \le 0.1\%$; measured $^{176}Hf/^{177}Hf$ with absolute 2σ internal error (x10⁻⁶) in parentheses; $^{176}Hf/^{177}Hf$ ratios corrected for mass fractionation with and exponential law and $^{179}Hf/^{177}Hf = 0.7325$; average $^{176}Hf/^{177}Hf$ value (n=19) for standard JMC475 was 0.282167±14 (2σ s.d.) during the measurement period; present-day ϵ Hf₀ calculated with ($^{176}Lu/^{177}Hf)_{CHUR} = 0.0332$ and ($^{176}Hf/^{177}Hf)_{CHUR} = 0.282772$; ϵ Hf_m calculated at age of high-grade metamorphism using $\lambda^{176}Lu = 1.93 \times 10^{-11} a^{-1}$.

	t _m †	[Sm]	[Nd]	¹⁴⁷ Sm [§]	¹⁴³ Nd [§]		_
Sample	(Ga)	(ppm)	(ppm)	¹⁴⁴ Nd	¹⁴⁴ Nd ±	εNd₀ [§]	εNd _m §
KX1-1	2.7	3.68	6.12	0.3632	0.516122 (14)	67.96	10.16
KX1-2	2.7	3.74	3.98	0.5672	0.519517 (9)	134.18	5.46
KX1-8	2.7	2.76	5.99	0.2787	0.514178 (8)	30.05	1.58
KX2-1	2.7	5.23	16.32	0.1937	0.512576 (7)	-1.21	-0.18
KX2-2	2.7	3.83	16.86	0.1373	0.511383 (7)	-24.48	-3.87
KX4-21	1.1	0.47	2.08	0.1364	0.512145 (8)	-9.62	-1.12
KX4-23	1.1	6.02	25.32	0.1437	0.512177 (7)	-9.00	-1.53
KX4-36	1.1	2.89	14.44	0.1211	0.512114 (10)	-10.23	0.42
KX5-7	1.1	0.64	2.30	0.1668	0.512164 (7)	-9.25	-5.06
KX20-1	1.0	6.85	31.97	0.1295	0.511930 (10)	-13.82	-5.24
KX20-3	1.0	33.4	130.6	0.1544	0.512212 (9)	-8.32	-2.91
KX20-4	1.0	5.21	18.99	0.1659	0.512279 (6)	-7.01	-3.08
KX20-5	1.0	7.32	48.34	0.0915	0.511643 (6)	-19.41	-5.96
KX20-8	1.1	5.06	24.44	0.1252	0.512042 (8)	-11.62	-1.55
KX31-4	1.0	5.84	26.16	0.1349	0.512210 (8)	-8.34	-0.43

TABLE DR3. Sm-Nd ISOTOPIC DATA FOR WHOLE ROCK SAMPLES

Notes: Data collated from Schmitz and Bowring (2003a, 2003b); 100-200 mg of whole rock powder were spiked with a mixed ¹⁴⁹Sm-¹⁵⁰Nd tracer, Sm and Nd were purified by standard cation and HDEHPion chromatography techniques and isotope ratios and element concentrations (ppm) measured by isotope dilution thermal ionization mass spectrometry (M.I.T.).

[†] time of high grade metamorphism determined from U-Pb zircon and monazite analysis, reported in Schmitz

and Bowring, (2003a, S. Afr. J. Geol., in press; 2003b, Geol. Soc. Am. Bull. 115, 533-548). [§] 2σ internal error in measured ¹⁴⁷Sm/¹⁴⁴Nd ≤ 0.1%; measured ¹⁴³Nd/¹⁴⁴Nd with absolute 2σ internal error (x10⁻⁶) in parentheses; ¹⁴³Nd/¹⁴⁴Nd ratios corrected for mass fractionation with and exponential law and ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219; long-term reproducibility of Nd isotopic standards is ≤ 20 ppm (2σ s.d.) while analyses (n=12) of USGS standard BCR-1 during the course of the study yielded ¹⁴³Nd/¹⁴⁴Nd = 0.512643±9 and ¹⁴⁷Sm/¹⁴⁴Nd = 0.1383±3 $(2\sigma \text{ s.d.})$; reproducibility of $\mathbb{E}Nd_m$ estimated at ±0.5 epsilon units; present-day $\mathbb{E}Nd_0$ calculated with $(^{147}Sm/^{144}Nd)_{CHUR} = 0.1967$ and $(^{143}Nd/^{144}Nd)_{CHUR} = 0.512638$; $\mathbb{E}Nd_m$ calculated at age of high-grade metamorphism using $\lambda^{147}Sm = 6.54 \times 10^{-12} a^{-1}$.

Sample Lith. [§]	KX4-21 m	KX4-23 m	KX4-36 m	KX5-7 m	KX20-1 s	KX20-3 f	KX20-4 m	KX20-5 f	KX20-8 m	KX31-4 m	
Major elements											
SiO ₂	51.51	47.97	47.46	53.34	37.15	57.61	42.17	64.27	49.05	52.37	
TiO ₂	0.33	1.64	0.42	0.29	2.16	1.25	1.60	0.27	1.79	1.06	
Al_2O_3	18.79	15.96	17.13	17.72	33.69	15.65	12.94	13.48	17.67	15.14	
Fe ₂ O ₃ ^T	7.20	15.89	11.22	7.06	18.81	8.28	20.17	2.21	10.13	10.58	
MnO	0.11	0.20	0.18	0.11	0.29	0.10	0.34	0.05	0.15	0.17	
MgO	8.54	4.07	8.77	7.49	4.40	2.27	9.17	1.23	6.50	8.76	
CaO	8.90	7.03	11.70	9.54	1.89	9.90	12.16	9.88	9.61	7.85	
Na ₂ O	4.17	5.91	2.31	3.50	1.34	1.78	1.27	3.38	4.23	1.92	
K₂Ō	0.50	0.82	0.80	1.12	0.42	2.80	0.28	5.39	0.60	1.85	
P_2O_5	0.02	0.38	0.06	0.02	0.03	0.02	0.12	0.09	0.40	0.39	
Total	100.1	99.8	100.1	100.2	100.2	99.7	100.2	100.3	100.1	100.1	
Trace e	lements										
V	114	345	253	82	560	124	505	22	149	195	
Ni	155	34	78	92	123	342	65	7	42	217	
Cr	325	81	193	438	431	106	353	14	109	359	
Rb	9.72	114	11.2	14.2	6.13	46.2	5.76	122	17.7	41.7	
Sr	786	333	578	311	143	1480	219	244	576	447	
Y	3.26	33.7	12.7	4.44	52.2	52.8	46.4	14.8	30.1	33.7	
Zr	6.28	64	25	13	494	417	56	121	160	124	
Nb	0.763	8.73	4.17	1.06	33.6	16.6	4.71	3.94	17.6	6.27	
Cs	8.45	58.1	2.31	0.204	0.403	0.210	0.323	0.390	1.31	0.126	
Ва	996	2752	1736	2310	83	589	157	1005	1268	748	
La	1.88	14.1	10.1	1.31	27.2	17.9	10.0	52.7	23.8	23.0	
Ce	4.08	39.1	26.7	2.79	54.1	35.7	28.5	103.5	52.2	56.0	
Pr	0.548	5.25	4.04	0.406	5.64	4.27	4.17	13.05	6.85	7.56	
Nd	2.44	23.9	17.0	2.06	19.9	16.3	18.2	44.7	27.9	33.3	
Sm	0.587	5.92	3.61	0.613	3.75	4.58	5.03	6.79	6.00	7.53	
Eu	0.460	1.84	1.20	0.836	0.498	1.15	1.56	1.37	1.92	2.23	
Gd	0.542	5.54	2.66	0.654	5.18	6.41	6.01	4.30	5.57	7.42	
Tb	0.093	0.930	0.395	0.122	1.07	1.27	1.10	0.551	0.894	1.06	
Dy	0.548	5.67	2.28	0.716	7.43	7.87	7.14	2.56	5.12	6.19	
Ho	0.116	1.21	0.450	0.158	1.76	1.73	1.59	0.488	1.03	1.18	
Er	0.335	3.49	1.27	0.441	5.35	5.07	4.63	1.26	2.79	3.20	
Tm	0.052	0.552	0.200	0.069	0.870	0.809	0.712	0.188	0.421	0.479	
Yb	0.328	3.55	1.25	0.442	5.86	5.37	4.71	1.26	2.51	3.00	
Lu	0.053	0.553	0.196	0.067	0.865	0.791	0.709	0.195	0.371	0.431	
Hf	0.226	1.55	0.757	0.223	12.3	10.2	1.79	3.05	3.86	3.40	
Та	0.033	0.264	0.125	0.011	1.73	0.901	0.195	0.286	1.08	0.292	
Pb	1.66	8.76	3.82	1.18	5.32	10.0	2.10	40.37	8.76	7.67	
Th	0.047	1.04	0.746	0.058	8.31	5.74	0.308	29.05	0.888	0.077	
U	0.040	1.42	0.524	0.145	1.60	0.504	0.057	0.956	0.379	0.043	

TABLE DR4. MAJOR AND TRACE ELEMENT COMPOSITIONS OF SELECTED SOUTHERN AFRICAN GRANULITE XENOLITHS[†]

Notes: Major elements and transition metals analyzed by standard XRF methods (U. Mass.-Amherst), other trace elements by solution quadrupole ICP-MS (MIT).

[†] Major and trace element compositions of metasedimentary granulites from the Lace and Voorspoed kimberlites reported in Schmitz and Bowring (2003b, Geol. Soc. Am. Bull. 115, 533-548).

§ Lithology abbreviations: s = metasedimentary; m = mafic metaigneous; f = felsic metaigneous.

TABLE DR5. ZIRCON U-Pb ISOTOPIC DATA FOR SOUTHERN AFRICAN GRANULITE XENOLITHS

		Composition					Isotopic Ratios									Dates (Ma)			
	Wt.	[[]]	[Pb]	Th [†]	Pb*	Pbc	²⁰⁶ Pb [§]	²⁰⁸ Pb [#]	²⁰⁶ Pb [#]		²⁰⁷ Pb [#]		²⁰⁷ Pb [#]		- corr.	²⁰⁶ Pb ^{††}	²⁰⁷ Pb ^{††}	²⁰⁷ Pb ^{††}	
Fract.	(µg)	(ppm)	(ppm) U	Pbc	(pg)	²⁰⁴ Pb	²⁰⁶ Pb	²³⁸ U	% err	²³⁵ U	% err	²⁰⁶ Pb	% err	coef.	²³⁸ U	²³⁵ U	²⁰⁶ Pb	<u>±</u>
KX1-2: Lace kimberlite, Garnet-quartz-sapphi							hirine-s	illimanit	e-kyanite	e-rutile g	ranulite								
zhf1	32.6	130	80	0.411	19	6.4	948	0.114	0.5238	7 (.33)	13.493	(.34)	0.18681	(.08)	0.973	2715.6	2714.8	2714.2	±1.3
zhf2	31.4	116	83	0.482	3.6	28	185	0.141	0.4904	1 (1.01)) 12.441	(1.19)	0.18399	(.58)	0.875	2572.4	2638.3	2689.2	±9.5
KX2-1,	Voors	boed k	imber	lite, Ga	rnet-	quartz	-sapph	irine-ant	iperthitic	feldspa	ar-sillima	nite-kya	anite-rutile	granu	lite				
zhf1	24.4	235	140	0.169	14	11	732	0.047	0.5237	9 (.32)	13.499	(.33)	0.18691	(.08)	0.971	2715.2	2715.2	2715.2	±1.3
zhf2	67.6	95	75	1.362	7.6	29	321	0.377	0.5179	5 (.27)	13.152	(.29)	0.18416	(.09)	0.950	2690.5	2690.6	2690.7	±1.5
KX4-23	: Mark	t kimbe	erlite;	Garnet	t-clinc	pyrox	ene ma	fic gran	ulite										
zhf1	94.4	114	24	0.360	8.4	24	515	0.111	0.1829	3 (.35)	1.9288	(.54)	0.07645	(.38)	0.712	1083.2	1091.1	1107.0	±7.6
zhf2	91.9	118	22	0.308	26.1	8	1589	0.095	0.1813	5 (.32)	1.9010	(.34)	0.07603	(.12)	0.933	1074.3	1081.5	1095.8	±2.5
KX20-1	: Letse	eng-la-t	terae	kimber	lite, G	Garnet	-kyanite	e-orthop	yroxene	granulit	e								
zhf1	38.8	201	40	0.237	4.9	13	321	0.074	0.1659	6 (.20)	1.6649	(.30)	0.07276	(.20)	0.725	989.8	995.2	1007.1	±4.1
zhf2	42.1	253	46	0.154	7.5	11	491	0.047	0.1653	9 (.23)	1.6530	(.28)	0.07249	(.15)	0.845	986.7	990.7	999.6	±3.0
zhf3	30.7	192	47	0.283	2.3	21	160	0.086	0.1710	6 (.13)	1.7245	(.75)	0.07312	(.68)	0.573	1017.9	1017.7	1017.2	±14
KX20-5	: Letse	ng-la-t	terae	kimber	lite, G	Garnet	-kyanite	e-clinopy	roxene	felsic gr	anulite								
zhf1	74.1	468	83	0.601	36.9	8.1	2083	0.190	0.1586	3 (.26)	1.5728	(.27)	0.07191	(.06)	0.976	949.2	959.5	983.3	±1.2
zhf2	81.4	422	95	0.627	4.1	76	247	0.191	0.1670	9 (.28)	1.6677	(.41)	0.07239	(.27)	0.747	996.1	996.3	996.8	±5.5
KX20-8	: Letse	ng-la-t	terae	kimber	lite, G	Garnet	-clinopy	roxene	mafic gr	anulite									
zhf1	91.8	205	48	1.053	15.5	13	801	0.320	0.1849	1 (.19)	1.9412	(.23)	0.07614	(.13)	0.832	1093.7	1095.4	1098.8	±2.5
zhf2	113	132	32	1.103	11.7	14	603	0.338	0.1827	5 (.09)	1.9121	(.12)	0.07588	(.08)	0.787	1082.0	1085.3	1092.0	±1.5

Notes: Data collated from Schmitz and Bowring (2003a, S. Afr. J. Geol., in press; 2003b, Geol. Soc. Am. Bull. 115, 533-548); fractions composed of 1-5 hand-picked, abraded grains; weights estimated to within 40% using measured grain dimensions and nominal density of 4.5 g/cm³; Pb* and Pbc represent radiogenic Pb and common Pb respectively; all errors reported at 2_σ, propagated using the algorithms of Ludwig (1980, Earth Planet. Sci. Lett. 46, 212-220).

[†] Th contents calculated from radiogenic ²⁰⁸Pb and the ²⁰⁷Pb/²⁰⁶Pb date of the sample, assuming concordance between U-Th-Pb systems.

[§] Measured ratio corrected for fractionation and spike contribution; Pb fractionation was 0.12 ± 0.04 %/a.m.u. for Faraday detector or 0.15 ± 0.04 %/a.m.u. for Daly detector analysis, based on daily analysis of NBS-981.

[#] Measured ratios corrected for fractionation, spike, blank, and initial common Pb; nominal U blank = 0.1 pg ± 50% (2σ); nominal Pb blank = 3.5 pg ± 50% (2σ) or where lower, the total common Pb of the analysis ± 10% (2σ); measured laboratory blank composition: ²⁰⁶Pb/²⁰⁴Pb = 19.10, ²⁰⁷Pb/²⁰⁴Pb = 15.72, ²⁰⁸Pb/²⁰⁴Pb = 38.65 ± 0.01 (2σ); initial Pb composition from model of Stacy and Kramers (1975, Earth Planet. Sci. Lett. 26, 207-221) at the nominal age of the fraction. ¹¹Isotopic ages calculated using the decay constants of Jaffey et al. (1971, Phys. Rev. C 4, 1889-1906).