DR2004052

Data Repository Item

Geochronology Sample Preparation and Analysis

Volcanic matrix from three basalts and one dacite sample from the Black Mountains and Black Hills, respectively, were separated to perform 40 Ar/ 39 Ar geochronology (Fig. A1 and Table A1). Matrix separates (250-180 µm size fraction) were produced using magnetic separation, heavy liquids and hand picking techniques to a purity of >99%. The separates were then washed in acetone, alcohol, and deionized water in an ultrasonic cleaner to remove dust and then re-sieved by hand using a 180-µm sieve.

Sample aliquots of approximately 1000 mg (4x250 mg) were packaged in copper capsules and sealed under vacuum in quartz tubes. The samples were irradiated for 10 hours (irradiation package KD27) in the central thimble facility at the TRIGA reactor (GSTR) at the U.S. Geological Survey, Denver, Colorado. The monitor mineral used in the package was Fish Canyon Tuff sanidine (FCT-3) with an age of 27.79 Ma (Kunk et al. 1985; Cebula et al. 1986) relative to MMhb-1 with an age of 519.4 \pm 2.5 Ma (Alexander, et al. 1978; Dalrymple et al. 1981). The type of container and the geometry of samples and standards are similar to that described by (Snee et al. 1988).

Samples were analyzed at the U.S. Geological Survey Thermochronology Laboratory in Denver, Colorado on a VG Isotopes Ltd., Model 1200 B Mass Spectrometer fitted with an electron multiplier using the ⁴⁰Ar/³⁹Ar step heating method of dating. For additional information on the analytical procedure see Kunk et al. (2001).

The argon isotopic data was reduced using an updated version of the computer program ArAr* (Haugerud and Kunk, 1988). We used the decay constants recommended by (Steiger and Jäeger, 1977). Table A1 shows ⁴⁰Ar/³⁹Ar step-heating data for the basalts and dacite and includes the identification of individual steps, existence of plateau, and total gas ages. Total gas ages represent the age calculated from the addition of all of the measured argon peaks for all steps in a single sample. The total gas ages are roughly equivalent to conventional K/Ar ages. No analytical precision is calculated for total gas

Header

ages. Plateau ages (not present) are identified when three or more contiguous steps in the age spectrum agree in age, within the limits of analytical precision, and contain more than 50% of the 39 Ar released from the sample.

References

- Alexander, E. C., Jr., Mickelson, G. M., and Lanphere, M. A., 1978, Mmhb-1: a new ⁴⁰Ar/³⁹Ar dating standard, *in* Zartman, R. E., ed., Short papers of the fourth international conference, geochronology, cosmochronology, and isotope geology: U.S. Geological Survey Open-File Report 78-701, p. 6-8.
- Cebula, G. T., Kunk, M. J., Mehnert, H. H., Naeser, C. W., Obradovich, J. D., and Sutter, J. F., 1986, The Fish Canyon Tuff: A potential standard for the ⁴⁰Ar/³⁹Ar and fission track dating methods: Terra Cognita, v. 6, n. 2, p. 140.
- Dalrymple, G. B., Alexander, E. C., Lanphere, M. A., and Kraker, G. P., 1981, Irradiation of samples for ⁴⁰ Ar/³⁹Ar dating using the Geological Survey TRIGA reactor: U.S. Geological Survey Professional Paper 1176, 55 p.
- Kunk, M. J., Sutter, J. F., and Naeser, C. W., 1985, High-precision ⁴⁰Ar/³⁹Ar Ages of Sanidine, Biotite, Hornblende, and Plagioclase from the Fish Canyon Tuff, San Juan Volcanic Field, South-central Colorado: Geological Society of America Abstracts with Programs, v. 17, p. 636.
- Kunk, M. J., Winick, J. A., Stanley, J. O., 2001, ⁴⁰Ar/³⁹Ar Age-Spectrum and Laser Fusion Data for Volcanic Rocks in West Central Colorado: U.S. Geological Survey, Open-File Report 01-472, p. 94.
- Haugerud, R. A., and Kunk, M. J., 1988, ArAr*, a computer program for reduction of ⁴⁰Ar-³⁹Ar data: U.S. Geological Survey, Open-File Report 88-261, 68 p.
- Snee, L. W., Sutter, J. F., and Kelly, W. C., 1988, Thermochronology of economic mineral deposits: Dating the stages of mineralization at Panasqueira, Portugal, by high precision ⁴⁰Ar/³⁹Ar age spectrum techniques on muscovite: Economic Geology, v. 83, p. 335-354.
- Steiger, R. H., and Jäeger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmo-chronology: Earth and Planetary Science Letters, v. 36, p. 359-363.

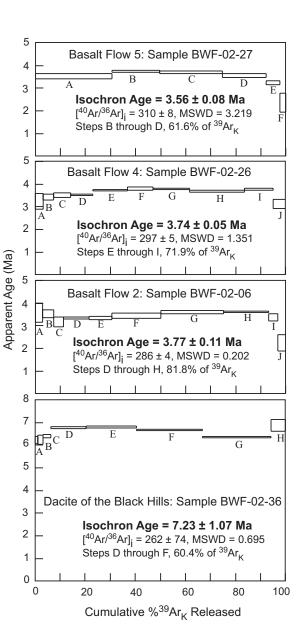

Figure Caption

Figure A1

Age spectra and inverse isochron ages from ⁴⁰Ar/³⁹Ar geochronology of glass matrix separates from basalt and dacite lava flows offset by the Blackwater fault. All ages in the plots are 2-sigma uncertainty. Vertical extent of boxes represents age uncertainty for individual heat steps. Black mountains basalt field shows stratigraphically consistent

Header

series of Pliocene ages, ca. 3.6 to 3.8 Ma. Dacite of the Black Hills is not younger than Late Miocene.

Table A1.	⁴⁰ Ar/ ³⁹ Ar step-heating data
-----------	--

A B C D E F	<i>asalt matrix</i> 700 800 900 1000	30.5 19.0	545 ± 0.50% 28.6	(Moles x 10^{-12}) wt = 751.4 mg # 0.941226	³⁹ Ar _k 1, 3 & 4KD	K/Ca	K/Cl	Age (Ma)		(Ma)
A B C D E F	700 800 900 1000	30.5 19.0	28.6	0	1, 3 & 4KD	27				
B C D E F	800 900 1000	19.0		0.041226		21				
C D E F	900 1000			0.941220	0.768	2.24	42	3.53	±	0.06
D E F	1000	25 1	47.9	0.587705	0.819	0.85	53	3.76	±	0.02
E F		25.1	65.6	0.775511	0.809	0.32	129	3.71	±	0.03
F	4400	17.4	67.6	0.538759	0.777	0.21	366	3.56	±	0.04
	1100	5.4	47.1	0.165909	0.707	0.17	167	3.24	±	0.05
	1250	2.6	21.2	0.078829	0.514	0.06	31	2.36	±	0.21
Total Gas		100	49.2	3.087939	0.780	0.97	129	3.58		
BWF-02-26	<u>basalt matri</u>	ix J = 0	0.002563 ± 0.002563	.50% wt = 999	.3 mg #9,	10, 11 & 12	KD27			
А	500	3.3	6.5	0.140083	0.702	2.63	28	3.24	±	0.17
В	600	4.1	16.2	0.174520	0.741	3.47	33	3.42	±	0.06
С	650	6.8	25.4	0.287824	0.760	3.03	35	3.51	±	0.05
D	700	8.9	32.9	0.377067	0.767	2.06	36	3.54	±	0.02
E	750	13.6	42.8	0.578647	0.807	1.13	46	3.73	±	0.02
F	800	10.3	54.3	0.438836	0.825	0.70	60	3.81	±	0.04
G	900	14.5	67.3	0.614999	0.820	0.37	109	3.79	±	0.02
Н	1000	21.9	77.5	0.930677	0.797	0.25	291	3.68	±	0.03
I	1100	11.4	71.1	0.483961	0.818	0.21	271	3.78	±	0.02
J	1450	5.0	31.2	0.213888	0.674	0.02	44	3.12	±	0.10
Total Gas		100	53.4	4.240502	0.790	0.98	133	3.65		
BWF-02-6	basalt matrix	J = 0.	002554 ± 0.5	50% wt = 1002	.7 mg #5,	6, 7 & 8KD.	27			
А	500	3.0	5.2	0.106533	0.777	2.19	35	3.58	±	0.21
В	600	4.5	12.0	0.162480	0.767	2.99	47	3.53	±	0.09
С	650	3.9	15.8	0.138130	0.688	3.24	52	3.17	±	0.11
D	700	10.1	20.0	0.360318	0.728	2.15	54	3.35	±	0.02
E	750	9.1	21.9	0.326614	0.727	1.78	55	3.35	±	0.04
F	800	19.7	25.7	0.703562	0.748	0.89	59	3.44	±	0.06
G	900	25.0	33.0	0.894284	0.782	0.38	70	3.60	±	0.04
Н	1000	17.9	45.6	0.641938	0.786	0.14	119	3.62	±	0.02
I	1100	3.6	33.7	0.127388	0.732	0.09	190	3.37	±	0.08
J	1450	3.3	10.5	0.117381	0.487	0.02	29	2.24	±	0.18
Total Gas		100	28.3	3.578628	0.750	1.00	74	3.45		
BWF-02-36	<u>dacite matri</u>	ix J = 0	0.002573 ± 0.002573	.50% wt = 100	0.7 mg #	13, 14, 15 &	16KD27			
А	700	1.2	29.7	0.083202	1.347	3.55	39	6.24	±	0.08
В	750	2.0			1.349	3.46	38	6.25	±	0.10
С	800	3.3		0.230703	1.381	2.93	35	6.40	±	0.04
D	900	14.0	60.2	0.985934	1.461	1.64	115	6.77	±	0.02
E	1000	19.9	63.0	1.396434	1.470	0.96	246	6.81	±	0.02
F	1100	26.4	60.5	1.856385	1.443	0.71	223	6.69	±	0.01
G	1450	27.2		1.908899	1.374	0.47	150	6.36	±	0.02
Н	1650	6.0		0.418319	1.487	0.50	194	6.89	±	0.13
Total Gas		100	57.7	7.020552	1.430	0.98	179	6.62		

Ages calculated assuming an initial 40 Ar/ 36 Ar = 295.5± 0. All precision estimates are at the one sigma level of precision. Ages of individual steps do not include error in the irradiation parameter J.

No error is calculated for the total gas age.