Ducea et al., Building the Pamirs: The view from the underside

Data Repository item 2003129

A. Methods

<u>Thermobarometry</u>. Major element phase chemistry measurements were determined at UCSB and University of Arizona using electron microprobes. Results and the choice of thermometer/barometer are given in Table DR1.

<u>Ar-Ar geochronology</u>. Ar-Ar age determinations were performed on mineral separates using the laser step heating technique at Stanford (Gansecki et al., 1996). Results and errors are given in Table DR2.

U-Pb geochronology. Zircons and monazites were analyzed in-situ in polished thin sections with the University of Arizona Micromass Isoprobe multicollector ICPMS equipped with 9 faraday collectors, an axial Daly detector, and 4 ion-counting channels. Results are given in Table DR3. The Isoprobe is equipped with an ArF Excimer laser, which has an emission wavelength of 193 nm. The analyses were conducted on 10 or 15 micron spots with an output energy of \sim 32 mJ and a repetition rate of 8 hz. Each analysis consisted of one 20-second integration on the backgrounds (on peaks with no laser firing) and twenty 1-second integrations on peaks with the laser firing. The depth of each ablation pit is ~ 15 microns. The collector configuration used allows simultaneous measurement of ²⁰⁴Pb in an ion-counting channel while ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, and ²³⁸U are measured with Faraday detectors. All analyses were conducted in static mode. Inter-element fractionation during the analyses was monitored by analyzing fragments of a large concordant zircon crystal that has a known (ID-TIMS) age of 564 \pm 4 Ma (2sigma). The reported ages for zircon grains are based on 206 Pb/ 238 U ratios because errors of the ²⁰⁷Pb/²³⁵U and ²⁰⁶Pb/²⁰⁷Pb ratios are significantly greater. This is due primarily to the low intensity (commonly <1 mV) of the ²⁰⁷Pb signal from these young, U-poor grains. The monazite ages are also based on 206 Pb/ 238 U ratios because a monazite standard was not analyzed during the study (prior analyses have shown that the Pb/U fractionation is similar for both zircon and monazite, whereas Pb/Th fraction is significantly different). For both zircon and monazite, the ²⁰⁶Pb/²³⁸U ratios are corrected for common Pb by using the measured ${}^{206}\text{Pb}/{}^{204}\text{Pb}$, a common Pb composition (Stacey and Kramers, 1975), and an uncertainty of 1.0 on the common ${}^{206}\text{Pb}/{}^{204}\text{Pb}$.

B. Data Tables

Table DIXI. Summary of their mobal officer is results.									
Rock	T (°C)	method	P (kb)	(b) method					
337	760 ± 100	Krogh-Ravna	21.8 ± 0.7	ab=jd+qz					
		(2000)							
1154B rim	1076 ± 213	all reactions;	26.9 ± 5.6 all reactions;						
		THERMOCALC		THERMOCALC					
1309	1045 ± 100	Krogh-Ravna	$\times 23.8 \pm 0.5$	ab=jd+qz aab=1					
		(2000)							
1283B	1090 ± 100	Krogh-Ravna	×24.0±0.7	ab=jd+qz aab=1					
		(2000)							
1503A	>950-1050	absence of mu	×14	ky=sill					
		and bi,							
		THERMOCALC							
1154A	1059 ± 185	all reactions;	25.6 ± 4.5	all reactions;					
		THERMOCALC		THERMOCALC					

Table DR1. Summary of thermobarometric results.

Temperatures calculated either from Fe–Mg partitioning between garnet and clinopyroxene, using the method of Krogh-Ravna (2000), which has an accuracy of ~100°C, or from intersections of all end-member reactions for equilibrium phases using THERMOCALC. Pressures calculated either from jadeite component of clinopyroxene in equilibrium with feldspar, using THERMOCALC, or from intersections of all end-member reactions for equilibrium phases using THERMOCALC. Uncertainties shown are $\pm 1\omega$.

Table DR2: Summary of Tri- Tri age								
determinations.								
Sample	Mineral	age						
ultrapotassic volcanic pipe								
D5	K-feldspar	10.8 ± 0.15						
	biotite	10.9 ± 0.2						
D4	K-feldspar	10.9 ± 0.4						
	groundmass	10.9 ± 0.14						
A2000	hornblende	11.1 ± 0.14						
	K-feldspar	11.1 ± 0.14						
		10.9 ± 0.14						
B2000	K-feldspar	11.0 ± 0.14						
xenoliths								
337	biotite	11.5 ± 0.2						
2014	biotite	11.2 ± 0.2						

 Table DR2. Summary of ⁴⁰Ar-³⁹Ar age

Uncertainties are $\pm 2\omega$. Analytical techniques in (Gansecki et al., 1996).

0/		207 204		207 228	±	206 228	±				
Grain [%]	U (ppm)	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb*/ ²³⁸ U	(%)	²⁰⁶ Pb*/ ²³⁸ U	(Ma)				
Metapelite P1503A											
Zircons											
s1c1	45	316	10	0.00232	10.1	15.0	1.5				
s2c7g1a	28	2366	299	0.00244	41.3	15.7	6.5				
s1c4g3	71	1300	22	0.00884	9.5	56.7	5.4				
scc6g1a	86	9044	3	0.00843	8.9	58.1	4.8				
s1c4	88	2965	6	0.01156	7.4	74.1	5.5				
s1c3g3	183	11834	634	0.01312	3.8	84.0	3.2				
s1c3	274	48929	18	0.02305	8.9	146.9	13.3				
s1c2	132	9685	40	0.02666	6.5	169.6	11.1				
s1c3g2	86	39133	49	0.06609	3.3	412.6	13.9				
s2c10gc	81	138466	6	0.06955	3.3	433.5	14.6				
s2c10g1	45	41727	8	0.07487	3.9	465.4	18.9				
s1c31	14	8000	4	0.14807	10.3	890.1	97.6				
s1c3g2	11	13747	6	0.24039	7.0	1388.7	107.6				
C											
Monazites											
s2c5g1bm	384	1255	0.20	0.00530	1.4	34.1	0.5				
s2c5g1am	501	1726	0.17	0.00588	1.7	37.8	0.6				
s1c4gr31cm	483	1739	0.23	0.00599	0.7	38.5	0.3				
s1c4g31dm	568	1875	0.27	0.00600	1.5	38.6	0.6				
s1c4g31bm	242	8408	0.29	0.00783	5.1	50.3	2.6				
Sanidine eclogite P1309											
Zircons											
s3c3g1c	49	2813	15	0.00995	2.4	63.8	1.5				
s3c3g1b	18	787	3	0.01368	7.3	87.6	6.4				
s3c11g1b	79	20866	106	0.02070	22.5	132.1	29.9				
s3c10g1a	58	81701	375	0.03081	18.1	195.6	35.9				
s4c3g1a	35	6721	8	0.03874	6.5	245.0	16.2				
s4c3g1b	29	2248	10	0.03990	13.1	252.2	33.6				
0											

Table DR3. U-Pb zircon and monazite analytical data.

[%]- Indicates individual grain analyses. * Indicates radiogenic Pb (corrected for initial Pb in zircons). ²⁰⁶Pb/²⁰⁴Pb is measured ratio. All uncertainties are at the 1-sigma level and reflect only random errors. Systematic errors from decay constants, calibration correction, and common Pb composition add ~2% (1-sigma) error. U concentration has an uncertainty of ~25%. Decay constants: ²³⁵U=9.8485x10⁻¹⁰, ²³⁸U =1.55125x10⁻¹⁰, ²³⁸U/²³⁵U=137.88. Isotope ratios are corrected for Pb/U fractionation by comparison with standard zircon with an age of 564 ± 4 Ma (2-sigma). Initial Pb composition interpreted from Stacey and Kramers (1975), with uncertainty of 1.0 for ²⁰⁶Pb/²⁰⁴Pb.